
  

  

Abstract— The Electroencephalogram (EEG) is a non-
invasive technique used in the medical field to record and 
analyze brain activity. In particular, Brain Machine Interfaces 
(BMI) create this bridge between brain signals and the external 
world through prosthesis, visual interfaces and other physical 
devices. This paper investigates the relation between particular 
hand movement directions while using a BMI and the EEG 
recordings during such movement. The Common Spatial 
Pattern method (CSP) over the high-γ  frequency band is 
utilized in order to discriminate opposite hand movement 
directions. The experiment is performed with three subjects 
and the average classification accuracy is obtained for two 
different cases.  

I. INTRODUCTION 

Patients with severe limb control disabilities caused by 
stroke, injuries or especial diseases like amyotrophic lateral 
sclerosis (ALS) [1] could improve their communication 
capabilities by using a BMI which records brain electrical 
activity and translates it to the control commands of robotic 
prosthesis, actuators or a virtual environment [2]. BMI might 
also help patients by expediting the rehabilitation process 
through providing biofeedback and keeping them motivated.  

Electroencephalogram (EEG) is a superior noninvasive 
technique with high temporal resolution for recording scalp 
brain activity. Specifically, EEG-based BMI systems have 
been proofed effective to classify limb movement, e.g. left 
hand, right hand, foot and tongue [3], making them a 
potential suitable noninvasive rehabilitation technique.  

Recent studies have shown the usefulness of raw EEG 
data to decode “grasp and hold” information [4] as well as 
hand movement flexion and extension [5]. Furthermore, 
after performing particular signal processing algorithms on 
the digital spatio-temporal EEG sequence, it has been 
possible to discriminate hand movement direction [6].  

However, the usage of BMI is yet limited in clinical 
applications mainly because of the limitation in the number 
of tasks to be classified and the long training sessions that 
one requires in order to achieve satisfactory results. 
Moreover, in terms of classification of hand movement in 
humans, the scenario is more complicated due to the 
inherent motion involved in the tasks. Nevertheless, 
kinematics such as velocity, position and direction could 
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provide additional information about the brain activity 
during such movement. 

One of the algorithms used in EEG-based BMI literature 
is the CSP method; in this paper we applied this technique to 
extract the most discriminative information from 58 
recorded EEG channels in a predefined paradigm, when 
subjects move a robotic hand in a random order in four 
different directions. 

In this work we studied a particular EEG band known as 
high-γ (65-85 Hz) and the fact that particular hand 
movement directions might be encoded in that frequency 
band. The results are consistent with the previous 
neurological studies. On the other hand, very low frequency 
EEGs, also called slow cortical potentials (SCP), were 
reported originally in [7] in a BMI paradigm. However, in 
most cases, months of training are required to enable 
patients to control the prosthesis accurately; thus we did not 
focus on this particular scenario. In 2009, Wang and Makeig 
investigated posterior parietal cortex (PPC) role to decode 
intended movement direction [8]. Their results show that 
noninvasive neuronal activity recording over this region is 
associated with different movement directions. At the same 
time, Waldert et al. decoded hand movement direction from 
both Magnetoencephalography (MEG) and EEG signals. 
They reported power modulations in filtered MEG in the 
low-frequency band, but not from the beta and high gamma 
bands. In order to detect the healthy subject’s hand/arm 
direction from EEG, the research group in Graz extracted 
features from EEG power between 5Hz and 30Hz, followed 
by a spatial filtering using the Common Spatial Pattern 
algorithm [9] 

The rest of the paper is organized as follows: Section II 
introduces the CSP technique; section III describes the 
experiment we performed along with practical 
considerations. Section IV presents and analyzes the results 
while section V provides the conclusions of the study and 
further directions of research. 

II. COMMON SPATIAL PATTERN METHOD 

CSP has been widely used in EEG literature to decode 
motor activity (see [10],[11],[12],[13]). It is considered part 
of the family of spatial filters for EEG and is based on the 
simultaneous diagonalization of covariance matrices. It was 
first proposed in [14] and outside the EEG literature, it is 
also known as the Fukunaga-Koontz transform (FKT).  

Let X represent a trial of the band-pass filtered spatio-
temporal EEG discrete sequence, i.e. 𝑋 ∈ ℝ!×!, where E is 
the number of electrodes and T is the number of sampled 
time points. Next, the spatial covariance matrix, (1), is 
estimated using the correlation matrix biased estimator: 
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 Ci = XX'/trace(XX') (1) 

where i = 1,2 represents a particular class in the training 
set. Due to the estimator, Ci will be a positive semidefinite 
(p.s.d) matrix; hence, their sum will be p.s.d as well, (2). 

 C = C1 + C2 (2)            

Now, we define the P matrix as (3). 

 P = λ-1/2U (3) 

where U is the matrix containing the eigenvectors of C 
and λ is the diagonal matrix with the corresponding 
eigenvalues. Next, we perform whitening on C, (4). 

 PCP' = P(C1 + C2)P' = S1 + S2 = I (4) 

where the transformed covariance matrices are (5-6): 

 S1 = PC1P' (5) 

 S2 = PC2P' (6) 

Both transformed covariance matrices share the same 
eigevectors, however, their eigenvalues must add up to one. 
Therefore, performing diagonalization on each individual 
transformed covariance matrix results in (7-9):  

 S1 = Bλ1B' (7) 

 S2 = Bλ2B' (8) 

 λ1 + λ2 = I (9) 

Now, in terms of discriminability, the eigenvector with 
the largest eigenvalue for S1 corresponds to the eigenvector 
with the smallest eigenvalue for S2. Therefore, the matrices P 
and B perform the whitening and further diagonalization 
needed for discrimination of two classes in the least squares 
sense, respectively; this results in (10),  

 W = P'B (10) 

Consequently, the spatially filtered sequence, 𝑍, is (11),  

 Z = W'X (11) 

For discrimination and dimensionality reduction 
purposes, in the literature, it is common to introduce the 
parameter m as the number of columns taken from 𝑍, i.e. the 
first and last m columns. Intuitively, the CSP algorithm 
creates a new joint space where the most discriminant 
directions correspond to the first and last m columns of the 
matrix W. Most of the times, this parameter is chosen in a 
heuristic manner depending on the classifier and trying to 
avoid overfitting. For a thorough analysis involving the free 
parameter m and FKT, refer to [15]. 

Due to the least squares approach for discrimination, the 
most obvious feature to be chosen is the variance from each 
direction in the joint space; hence, each element of the 
feature vector is equal to (12)  

 Fp = log(var(Zp)) (12) 

where p takes values from 1 to 2m. The log-operator is 
used to approximate a normal distribution. 

III. EXPERIMENT 
For our study, we recorded EEG data from 3 different 

subjects during actual hand movement and provided visual 
feedback through a simple and intuitive interface. 

A. Setup 
Our analysis was performed on data recorded at the 

Brain Rehabilitation Research Center (BRRC) of the 
Malcolm Randall VA Medical Center, located in 
Gainesville, Florida. Furthermore, the EEG sequences were 
recorded using a 64-channel Neuroscan SynAmps RT EEG 
amplifier and a ADC of 24 bits. Also, the sampling 
frequency of the recordings was 250 Hz. During each 
interval, as prompted by a visual cue through a monitor, the 
subject moves his right hand in four different directions 
while holding a modified InMotion ARM robot, also known 
as MIT MANUS.  

At the start of each trial, a target appears on screen in one 
of four directions: North, South, East, and West. In addition, 
the order of presentation was randomized in order to 
discourage predisposition towards any direction. The target 
remains on screen for five seconds as the subject moves his 
hand in the desired direction.  At that point, the target 
disappears from the screen, the subject returns his hand to 
center, and then rests until the next target is presented five 
seconds later.  The timeline for a single trial is shown in Fig. 
1. We performed the experiment with 3 subjects, all right-
handed and over 50 years of age. For each subject, a total of 
28 trials in each direction were recorded. 

B. Data Processing 
Due to the fact that the movement is always performed 

using the right hand, only the electrodes corresponding to 
the midline of the scalp and its left hemisphere were used, 
i.e. a total of 33 channels: FP1, FPz, AF3, F7, F5, F3, F1, Fz, 
FC5, FC3, FC1, FCz, T7, C5, C3, C1, Cz, TP7, CP5, CP3, 
CP1, CPz, P7, P5, P3, P1, Pz, PO7, PO5h, PO3h, POz, O1, 
Oz. 

The next step was to visually inspect the EEG recordings 
and discard the trials where disconnected electrodes were 
noticed as well as blinks and other common artifacts. Due to 
the presence of a high-amplitude, low-frequency trend 
(around 0.1 Hz), the spatio-temporal EEG discrete sequences 
were first pre-processed using a first order linear adaptive 
filter [16] with constant input equal to 10, and a stepsize 
parameter of 2×10-4. Additionally, the high-pass -3 dB point 
of the adaptive filter is located around 0.25 Hz. We chose 
this approach instead of regular highpass filtering mainly 
because the adaptive filter successfully suppresses the low-
frequency component while keeping the original EEG 
recording intact. It is likely that the low frequency trend is 
due to an external artifactual source rather than the brain 
activity. In addition, the main focus of this paper is the high-
γ band, and not the low frequency part of the spectrum. For 
each subject, a particular time window (1.5 seconds to 2 
seconds) is chosen during the movement task. Then, before 
applying the CSP algorithm, we specified a particular 
frequency band of interest. For our case, due to previous 
studies done by Waldert et al., we chose the 62 Hz to 87 Hz 
band. Additionally, an elliptic filter was used along with a 



  

zero-phase filtering scheme in order to avoid transient 
effects. 

 
Figure 1.  Timeline for a single trial of the experiment. 

Fig. 2 shows an example of the projected samples in the 
new joint space when m = 1, i.e. first and last columns of 𝑍 
for all the trials of Subject 1. Then, the feature vector is 
computed using (12). Classification was computed on 
opposite directions, i.e. North - South and East - West. 
Ideally, the resulting features have means located 
diametrically opposite of each other; thus, a Fisher Linear 
Discriminant classifier was used. For testing purposes, we 
used the cross-validation method known as “Leave-one-out” 
which means that, for N samples, we chose N-1 for training 
and performed classification over the sample that was not 
used for training. This procedure was repeated N times and, 
at the end, the results were averaged for each subject. Fig. 3 
depicts the block diagram of our experiment. 

 
Figure 2.  EEG time samples projected in the most discriminant directions 

of the new joint space. 

 
Figure 3.  Block diagram of the proposed method. 

IV. ANALYSIS OF RESULTS 
As previously mentioned, we implemented our algorithm 

on the EEG data in a two-class scheme; specifically, for the 
North - South case, an average classification of 83.5% was 
achieved, while, in contrast, for the East - West scenario, we 
obtained 62.5%. Table I illustrates the means and standard 

deviations of classification accuracy for each subject. In 
terms of sensitivity and specificity, we obtained 78.7%, 
87.9%, 66% and 59% of classification accuracy for the 
classes North, South, East and West, respectively. These 
results were computed using m=1 for the free parameter in 
the CSP algorithm. This choice conveyed the best average 
classification accuracies. For instance, Table II shows the 
results for different values of m. These results agree with 
[17], where discrimination in terms of hand direction was 
encoded in the high-γ band and in the low part of the 
spectrum; specifically in the 0 Hz - 7 Hz band.  

TABLE I. Average classification accuracy in percentage for cross-
validation experiments 

Subject North - South East - West 

Subject 1 93.02 ± 25.78 60.61 ± 49.62 

Subject 2 80.56 ± 40.14 56.82 ± 50.11 

Subject 3 77.08 ± 42.47 70.00 ± 46.29 

 

TABLE II. Average classification accuracy in percentage per subject 
for different values of m 

Subject. Directions m = 1 m = 2 m = 3 

Subject 1. North - South 93.02 93.02 90.70 

Subject 1. East - West 60.61 57.58 63.64 

Subject 2. North - South 80.56 77.78 72.22 

Subject 2. East - West 56.82 61.36 54.55 

Subject 3. North - South 77.08 68.75 72.92 

Subject 3. East - West 70.00 60.00 66.00 

 
Our hypothesis can be tested using the spatial patterns 

from the CSP algorithm. Namely, the first and last rows of 
the inverse of the matrix W. Fig. 4 shows the results for both 
scenarios and indicates clear differences for the North - 
South case, while on the other hand, more evident and 
common patterns between classes East and West are 
obtained. Specifically, for North vs. South, the frontal-
central and the motor cortex regions display the most 
significant changes in terms of activation. 

 
Figure 4.  CSP Spatial Patterns for a) North - South case (Subject 1) 

and b) East - West case (Subject 2). 

V. CONCLUSION AND FURTHER WORK 
This paper dealt with the implementation of a BMI 

where hand movement direction can be distinguished 
through proper analysis of brain signals. One of the purposes 



  

of the aforementioned BMI is to aid physically disabled 
subjects who go through physical therapy in order to recover 
motor abilities. The system was implemented by focusing on 
the EEG high-γ band and by finding an optimal linear 
projection (CSP) that discriminates two conditions in terms 
of second-order statistics.  

The results show a clear difference between North vs. 
South and East vs. West discrimination; which suggests that 
the 62 Hz to 87 Hz band encodes more discriminant 
information for particular hand movement directions. In 
addition, it is also remarkable that the high-γ band provides 
relevant information; especially considering that its SNR is 
inherently low and the band is relatively close to the 60 Hz 
power line artifact. For instance, Fig. 5 shows EEG data 
recorded from electrode C3 for a single trial during 
movement after bandpass filtering. It is clear that there is 
modulation for this particular band; thus, it is not possible 
that this is a result of a constant 60 Hz artifact. 

Additionally, it has been reported by Darvas et al. [18] 
that Electromyogram (EMG) interference is likely to occur 
over the high-γ band during EEG recordings that involve 
motion. Hence, in order to ascertain that our algorithm 
decodes neuronal activity, we applied the CSP technique in a 
windowed scheme, i.e. the experiment was computed for 
consecutive non-overlapping time windows during which we 
only focused on the activity recorded by the electrodes over 
the left primary motor cortex.  

 
Figure 5.  Upper figure: EEG sequence after bandpass filtering for the 

task North. Lower figure: power espectral density estimation. Subject 1. 

 
Figure 6.  CSP Spatial patterns for consecutive non-overlapping 1-
second time windows. First row: East direction. Second row: West 

direction.  Subject 1. 

Fig. 6 shows the results using 1-second windows during 
target reaching. We can appreciate that there is more 
significant and localized discriminability (around electrode 
C3) during the first seconds, i.e. pre-movement, and 

movement, while the discriminant activity starts to become 
more scattered by the end of the task, i.e. post-movement 
and rest. This suggests that brain activity is being decoded 
and used for discrimination and also agrees with the results 
shown in [19] regarding high-γ activity over the motor 
cortex at movement onset.  

Future work will analyze different discriminant methods 
not only based on second-order statistics. Moreover, we will 
interpret the current results and perform further studies about 
how the high-γ band could be combined with other well 
known EEG spectral bands. 
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