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Abstract— We propose a novel interpretation of single chan-
nel Electroencephalogram (EEG) traces based on the transient
nature of encoded processes in the brain. In particular, the
proposed framework models EEG as the output of the noisy
addition of temporal, reoccurring, transient patterns known
as phasic events. This is not only neurophysiologically sound,
but it also provides additional information that classical EEG
analysis often disregards. Furthermore, by utilizing sparse
decomposition techniques, it is possible to obtain amplitude
and timing that is further modeled using estimation and
fitting techniques. We model Brain-Computer Interfaces (BCI)
competition data features as Gaussian Mixture Model (GMM)
samples in order to show the potential of working in the joint
space of the parameters. The results not only preserve the
topographic discriminant behavior but also expand the realm
of possible EEG analysis.

Index Terms— EEG, Gaussian Mixture Model, Phasic Events,
Transient Model

I. Introduction

EEG characterizes the synchronous average activity of
cortical neural populations in the brain. It is the result of
the spatiotemporal interactions between graded excitatory
postsynaptic potentials (EPSP’s) and inhibitory postsynaptic
potentials (IPSP’s) [1]; thus, it portrays the macroscopic
neuronal activity at a relatively lower temporal scale than
spikes. In this way, it is complimentary to single neuron
models by providing not only amplitude information that is
absent in action potentials, but also phase and modulation-
related activity that reflects the local interactions between
cortical principal cells and interneurons [2].

Due to its noninvasive nature, high temporal resolution
and multichannel recording paradigm, EEG has been widely
utilized in several studies and applications where it is possi-
ble to decode and interpret neural activity. Relevant examples
include diagnosis of pathological conditions, such as epilepsy
and Parkinson’s disease, assessment of sleep stages, and BCI
[3]–[6].

Most of these applications rely on the heavy assumptions
of stationarity and ergodicity. This is mostly convenient from
a statistical point of view because expected values can be
replaced by temporal averages in the hope to obtain consis-
tent estimators. However from a neurophysiological stance,
it contradicts some of the most important facts regarding
neuronal activity. For instance, electrical potentials from the
brain are a well-known example of non-stationary stochastic
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random processes where the statistical properties vary over
time in a transient scheme [7] as a direct consequence
of the ongoing reorganization of neuronal assemblies and
modulation of their level of synchronism. It is imperative,
then, to incorporate this biological constraint into current
EEG processing frameworks.

Brockmeier and Principe proposed a model for neuronal
oscillations based on the idea that a single EEG trace is the
result of transient, reoccurring patterns over time added on a
noisy background [8], [9]. The model, since then, has been
reformulated in order to incorporate the EEG physiological
rhythms; this facilitates the interpretation and opens the pos-
sibility for cross-rhythm analysis. Moreover, the current work
focuses on the detection of relevant encoded behavior-related
patterns over time, also known as phasic events; this task is
accomplished without appealing to window-based methods
that blur the temporal information and, commonly, provide
amplitude data alone. Also, estimation techniques are used
to fit the newly discovered parameters in order to quantify
and compare them topographically and physiologically.

The rest of the paper is organized as follows: Section
2 describes the transient model for EEG while Section 3
explains the required algorithms needed to determine relevant
phasic events. Section 4 details the estimation procedure and
illustrates the results using BCI competition data. Lastly,
Section 5 concludes the paper and discusses further research.

II. TransientModel for EEG

Following the clinical interpretation regarding EEG [7],
an anthropomimetic model for neuronal oscillations is es-
tablished. In particular, a single EEG trace is posed as the
result of the noisy addition of reoccurring, transient events
over time. From a systems point of view, the transient events
can be modeled as shifted versions of finite impulse response
(FIR) bandpass filters that will be activated via samples from
a pulse train. Moreover, this pulse train is further multiplexed
to accommodate the well-known EEG rhythms [10]; in this
way, the FIR filters are naturally grouped into filter banks
with similar central frequencies.

Fig. 1 depicts the block diagram of the aforementioned
model. It is worth noting that each pulse not only contains
superior temporal information (up to the inverse of the sam-
pling rate), but it also incorporates amplitude and indexing
features assuming each bandpass filter is normalized. Hence,
the pulse train can be modeled as a collection of samples
from a Marked Point Process (MPP). In equations, the output
of the system, x(t), will be an EEG-like signal that resembles
the changing structure of neuronal oscillations.
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Fig. 1: Transient Model for EEG. A single-channel EEG
recording can be regarded as the noisy addition of transient, finite,

reoccurring events over time and different frequency bands.

x(t) = n(t) + x̂(t) = n(t) +

F∑
i=1

yi(t) (1)

yi(t) =

ni∑
j=1

∫ ∞

−∞

αi, jδ(t − τi, j)hi,ω j du (2)

where F is the number of filters banks, i.e. EEG rhythms
to be analyzed, n(t) is the additive noise, in this case colored
noise due to the low-pass filtering property of cortical tissue
in the brain [11]. α and τ constitute the phasic event’s
amplitudes and timings, respectively. Lastly, Hi = {hi,ω j } is
the i-th filter bank with unit-norm elements, also known as
atoms or patterns. In addition, the collection of MPP samples
will also be referred to as the sources of the system.

The paramount advantage of this model is its superior
temporal resolution that opens the door for precise detection
of phasic events, assessment of cross-rhythm interaction, and
computation of relevant statistics beyond the almost perva-
sive Power Spectral Density (PSD) estimators that rely on
power-based measures alone and disregard any information
encoded in the phase of the signal. In addition, our transient
model can incorporate additional features inherent to the
filter banks themselves, e.g. modulation measures, central
frequency, and duration. This makes the transient model not
only neurophysiologically sound, but also, richer in terms of
the potential features obtained for further analysis.

III. Detection and Discovery of Phasic Events

Once the model is defined, two different pathways can
be adopted: synthesis or analysis. The first one implies the
generation of EEG-like time series as a result of discrete
samples from the ideal joint distribution of amplitude, timing
and indexing characteristics along with the EEG rhythm-
based filter banks, and the noise model; for an example of the
synthesis scheme, see [12]. On the other hand, the analysis
pathway strives to estimate all the model parameters from

a single-channel EEG trace. Specifically, the objective is to
find the precise timing, amplitude and additional features of
the relevant EEG phasic events.

Different approaches can be adopted to estimate the model
parameters. For instance, the simplest solution involves para-
metric and non-parametric PSD estimation techniques [13];
however, the end result completely disregards the tempo-
ral structure of the data due to the one-to-many mapping
between the estimated PSD magnitude and the input time
series. Alternatively, Time-Frequency (TF) analyses attempt
to solve this limitation; nevertheless, the introduction of a
processing window smears the temporal information accord-
ing to the well known time-frequency resolution trade-off.
In addition, Short-Time Fourier Transform (STFT) methods
and Wavelet Transforms [14] impose complex sinusoids and
wavelets as filter banks, respectively. This, in consequence,
limits the pattern’s shape and derives in overrepresenated
phasic events.

A more viable solution comes from the inherent sparsity
of the MPP; this leads to a reformulation of the analysis
problem using a sparse approximation framework [15], i.e.
for vectors in a Hilbert space CΛ:

minΛ⊂Ωminb∈CΛ
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subject to |Λ| ≤ L (3)

where x is the input vector, D = {ϕω : ω ∈ Ω} is the
dictionary matrix with columns known as atoms; lastly, b is
a list of complex-valued coefficients. The constrained opti-
mization is combinatorial, NP-hard; hence, a computationally
fast, greedy algorithm is commonly utilized to obtain a local
solution of (3). This technique is known as Matching Pursuit
(MP) [16] and is detailed in Algorithm 1 for the time series
case where FFT-based operations are computed to assess the
locally maximum correlated atom in the dictionary along
with its amplitude and timing for each iteration.

MP has been successfully applied to EEG recordings in
the past [17]; however, the final representation will heavily
rely on the dictionary atoms and the parameter L, i.e. if
it is chosen too small, relevant phasic events might be
ignored, while if it is chosen too large, the phasic events
become overrepresented and the sparsity constraint becomes
meaningless. For a possible solution of this problem using
alternative sparsity measures, see [12].

Algorithm 1 Matching Pursuit, Time Series Case
Parameters: L

r(t)← x(t)
for i = 1 . . . L do

bq(t) = xcorr(ϕq(t), r(t)) q = 1, . . . ,K
pi ← argmaxqmaxt |bq(t)|
τi ← argmaxt |bpi (t)|
αi ← bpi (τi)

r(t)← r(t) −
∞∫
−∞

αiδ(t − τi − u)ϕpi (u)du

end for



Algorithm 2 Phasic Event Estimation
Parameters: M, δ

L← dN/Me
D← Dinit(x(t), 20 × L,M)
D← Drest(D)
repeat
{(pi, αi, τi)}Li=1 ← MP(x(t),D, L)
e(t)← x(t)−rebuild({(αi, τi, dpi )}

L
i=1)

for k = 1, . . . K do
wk ← {i|1 ≤ i ≤ N, {pi}

L
i=1 = k}

e(k) ← e(t)+rebuild({(α j, τ j, dp j )}
j=k)

Ek ←matrix(e(k), {τ j}
j∈wk ,M)

Ek ← U∆VT

dpi ← U(:, 1)
end for

until convergence
θ ← 0, J ← 1
while θ < δ do
θ ←norm(x(t))/norm(rebuild({(αi, τi, dpi )}

J
i=1))

J ← J + 1
end while
L← J − 1
{(pi, αi, τi)}Li=1 ← MP(x(t),D, L)

It would be more advantageous and principled to detect the
relevant phasic events from the EEG itself without depending
on predefined filter banks; this builds a generative dictionary
from the sparse patterns over time. A possible solution
involves dictionary learning techniques, such as K-SVD [18]
where alternating optimizations are performed: first, MP
sparse approximation, and then, dictionary learning using
Singular Value Decomposition (SVD).

Brockmeier applied this technique to neuronal oscillations
in the past [8]; however, we improve the phasic event
discovery by limiting the potential candidates for dictionary
components. Specifically, the function Dinit computes a large
number (20 × L as heuristic) of atoms based on shifted M-
sample long snippets from the input time series. Here, L
indicates the maximum possible number of non-overlapping
phasic events present in the EEG trace. Moreover, based
on clinical interpretations [19] and the temporal interactions
of firings between pyramidal cells and interneurons [1], we
are mostly interested in spindle-shaped phasic events that
reflect amplitude modulation over time. This is achieved
by the function Drest that computes a smooth, interpolated
version of the Hilbert Transform magnitude [20] of the atoms
and discards the filters with non-spindle-like shape. This not
only constrains the modulation pattern of the relevant phasic
events, but also accelerates the overall performance of the
algorithm by reducing the size of the dictionary.

As algorithm 2 details, the alternating optimization prob-
lem first fixes the dictionary and performs sparse approxi-
mation; then, a matrix of patches, Ek, with only the active
k-th atoms is built. Afterward, that particular k-th pattern
is updated via SVD of Ek. The process is repeated for

each atom in the dictionary. The alternating optimization is
stopped after convergence is reached in the form of a running
variance threshold (1 × 10−5). Lastly, several reconstructed
signals are computed via the function rebuild until the nor-
malized reconstructed signal power threshold δ is reached.

Fig. 2 shows an example of the final estimated phasic
events. Specifically, the data corresponds to BCI competition
dataset IIIb, subject O3VR [21]. For this experiment, the
user is asked to imagine a left/right arm movement in order
to control a cursor in a screen in front of him. Thus, two
different labels are provided along with two bipolar record-
ings corresponding to C3 and C4. It is worth mentioning
that throughout this paper, all the analysis and processing
was performed utilizing a bandpass filtered version of the
provided traces. We focus on the µ rhythm that is known for
motor-related activity encoding [22]. Lastly, M = 50 samples
(0.4 s.) is chosen as the duration of the phasic events.

IV. Estimation ofModel Parameters
Once the phasic events are isolated, it is necessary to

model the MPP parameters. We focus on the 2-second
sequence in [21] involving a trigger signal at t = 0 that acts
as a pre-stimulus and a visual cue at t = 1 when the subject
is instructed to perform the imagery movement task. The first
results compare the log-variance computed from the original
bandpass filtered EEG and the log-decomposition α’s. The
logarithm transform was computed to encourage Gaussianity
and for the phasic event discovery algorithm, we heuristically
set δ = 0.9. To summarize, the average values along with the
significance relevance (t-test) are shown in Table I. As the
p-values suggest, the MP, K-SVD decomposition is able to
preserve the statistical significance, and thus discriminability,
of the magnitude between channels across conditions.

TABLE I: Average log-variance and log-α per task and channel

Task 1 Task 2
C3 C4 C3 C4

Log-var 3.95 1.98 2.18 3.94
p-value 1.89 × 10−11 7.95 × 10−9

Log-α 10.70 9.61 9.71 10.69
p-value 2.68 × 10−8 3.48 × 10−7

0 0.5 1 1.5 2
Time (s)

Fig. 2: Example of phasic event discovery. From top to bottom:
Bandpass filtered EEG trace. 1 phasic event detected, δ = 0.5. 1

phasic event detected, δ = 0.6. 2 phasic events detected, δ = 0.7. 3
phasic events detected, δ = 0.8. 4 phasic events detected, δ = 0.9.



One important fact should be noted at this point: the 2-
second interval under analysis includes two very distinct be-
havioral stages, i.e. readiness or pre-movement and imagery
movement itself. However, Table I does not reflect this phase
transition due to the absence of temporal information. Hence,
we explore the joint (α, τ) distribution obtained from algo-
rithm 2 and fit it using the Expectation Maximization (EM)
algorithm [23] under Gaussian priors in order to elucidate
this matter. Additionally, the optimal number of components
is assessed using the Bayesian Information Criterion (BIC)
[24]; in this way, the 2-dimensional pdf is posed as a GMM
with P components and weights {qi}

P
i=1.

For instance, Fig. 3 depicts the histograms and scatter
plot of the aforementioned distributions for electrode C3
and task 1. In addition, Table II describes the 3-component
multivariate GMM parameters and significance for Task 2.

TABLE II: Topographic GMM parameters (µ̄q = [µτq , µαq ]) for
right hand movement (Task 2).

q1 µ̄1 q2 µ̄2 q3 µ̄3
C3 0.14 [0.2, 9.8] 0.69 [1.0, 9.6] 0.17 [1.8, 9.9]
C4 0.17 [0.2, 10.0] 0.66 [1.0, 10.8] 0.17 [1.7, 10.9]

p-value 4.62 × 10−1 8.74 × 10−17 1.94 × 10−3

Statistical relevance is computed using the two-sample
Hotelling’s T-square test for each component. In this way,
it is evident that the discriminant behavior is not significant
at the beginning of the trial and reaches its apex around the
1-second mark; this is, in fact, expected according to the
experiment setting. Task 1 displays similar properties but is
omitted for brevity.

V. Conclusions and FurtherWork

We have modeled the joint pdf of amplitudes and timings
regarding µ rhythm phasic events. This opens the possibility
for novel EEG analysis with exceptional temporal resolution.
For instance, the relationship between microscopic activity,
such as spikes, and macroscopic phenomena or neuronal
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Fig. 3: Example of decomposition models. Top left: log-α with
estimated Gaussian model. Top right: τ with estimated GMM

(P = 3). Bottom: log-α,τ with estimated GMM (P = 3)

oscillations can be directly assessed using temporal point
process techniques. In addition, the joint space can be
utilized to compute distance metrics in order to improve dis-
criminability and quantify differences across topographical
regions of the brain under diverse behavioral states.
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