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Abstract— We propose a novel interpretation of local field
potentials (LFP) based on a marked point process (MPP)
framework that models relevant neuromodulations as shifted
weighted versions of prototypical temporal patterns. Partic-
ularly, the MPP samples are categorized according to the
well known oscillatory rhythms of the brain in an effort to
elucidate spectrally specific behavioral correlates. The result is
a transient model for LFP. We exploit data-driven techniques
to fully estimate the model parameters with the added feature
of exceptional temporal resolution of the resulting events. We
utilize the learned features in the alpha and beta bands to assess
correlations to tic events in patients with Tourette Syndrome
(TS). The final results show stronger coupling between LFP
recorded from the centromedian-paraficicular complex of the
thalamus and the tic marks, in comparison to electrocor-
ticogram (ECoG) recordings from the hand area of the primary
motor cortex (M1) in terms of the area under the curve (AUC)
of the receiver operating characteristic (ROC) curve.

Index Terms— Marked Point Process, LFP, Tourette Syn-
drome, Transient Model

I. Introduction

Local field potentials characterize the mesoscopic electri-
cal activity in the brain. In particular, they reflect the syn-
chronized average spatiotemporal interactions brought about
by graded excitatory postsynaptic potentials (EPSP’s) and
inhibitory postsynaptic potentials (IPSP’s) [1]. When com-
pared to electroencephalogram (EEG), the inherent invasive
nature of LFP provides finer spatial resolution and improved
SNR levels. This allows for specific targeting of cortical and
subcortical structures for uncovering the relationship between
internal physiological processes and/or external stimuli.

Tourette Syndrome is a childhood-onset neuropsychiatric
disorder that comprises motor and phonic tics that may
be accompanied by other neuropsychiatric comorbidities
[2], [3]. Its pathophysiology remains unknown; hypotheses
include hyperactive dopaminergic neurons in the cortico-
striato-thalamo-cortical circuit, abnormally increased cortical
excitability, and dysfunction of basal ganglia dopaminergic
structures [4]. In terms of therapies, deep brain stimulation
(DBS) constitutes a suitable alternative when pharmacolog-
ical methods are no longer an option [5].
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In particular, adaptive DBS (aDBS) has been proved effi-
cient in Parkinson’s Disease by monitoring the ongoing LFP
in an effort to provide proper feedback and prompt stimula-
tion [6]. Hence, a similar approach can be applied to TS pa-
tients. We focus on DBS recordings from the centromedian-
paraficicular complex of the thalamus (CM-PF) and ECoG
from the hand primary motor cortex (M1) during tic events
scored by a clinician. We exploit a novel framework for
neuronal oscillations that poses relevant events as the result
of marked point process samples activating finite impulse
response filters over time. In this way, the temporal resolution
is preserved up to the sampling frequency scale and the
resulting features can be further utilized to understand the
underlying mechanisms operating during tics in TS patients.

The rest of the paper is organized as follows: Section
2 introduces the transient model for neuronal oscillations.
Section 3 describes the methods utilized to estimate the
model parameters while Section 4 details the experimental
setting. Section 5 presents the main results, and, lastly,
Section 6 concludes the paper and discusses further research.

II. TransientModel for LFP

One of the hallmarks of neuronal oscillations (EEG, ECoG
or LFP) is their transient nature, i.e. weak, short-living
local perturbations can affect large parts of the network
and exhibit long-lasting effects. Moreover, the ever-changing
functional and synaptic connectivity in the brain provides
the necessary temporal windows for short-lived oscillations
that appear, disappear and reoccur depending on external
stimuli processing and/or internal states of the network [7].
We propose a novel generative, multiple input-single output
(MISO) framework that is based on a multivariate shot noise
model [8]. In particular, it models neuronal oscillations (or
EEG for short) as the output of the convolution between
weighted Kronecker delta trains and finite temporal filters.
The proposed model is illustrated in Fig. 1 or in equations:

x[n] = n0[n] + x̂[n] = n0[n] +

L∑

i=1

yi[n] (1)

yi[n] =

ni∑

j=1

∞∑

m=−∞

αi, jδ[n − τi, j − m]di,ω j
[m] (2)

where x[n] is an EEG-like signal that represents a single-
channel trace, n0[n] is the noise component with 1/ f spectral
distribution [9]. Each yi[n] consists of the convolutions
between weighted, shifted Kronecker deltas and indexed
temporal patterns contained in the filter bank or dictionary,
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Fig. 1: Transient Model. A single-channel EEG trace is modeled
as the noisy addition of reoccurring, transient events over time.

Di, i.e. Di = {di,ω j
}. The number of filter banks or atoms, L, is

set depending on the frequency bands under analysis; in par-
ticular, the behavioral-related distinctions of the oscillatory
rhythms make them ideal for this task. The set {(τi,αi,ωi)}i
can be conceived as the timestamps and features of a MPP,
respectively; in this way, we devise a novel framework for
decomposition and analysis of EEG where the temporal
resolution has a lower bound set by the sampling rate.

III. Methods

We begin by focusing on an individual frequency bands;
in this way, the decomposition task reduces to multiple
single input-single output (SISO) problems. Furthermore, we
require a double sparsity constraint regarding the relevant
neuromodulations or phasic events; we assume no overlap
between adjacent monoscale patterns, and also, a relevant
event has to be encoded by only one shifted weighted
version of a dictionary atom. This last constraint goes against
classical decomposition schemes that only represent EEG
segments, e.g. Fourier Transform, and conforms more closely
to sparse decomposition techniques that strive to parsimo-
niously represent EEG traces [10]. With these constraints
in mind, we proceed to make use of greedy decomposition
methods in an effort to efficiently estimate the MPP samples
and filter bank components in an unsupervised fashion.

Our approach mimics the well known clustering technique
k-means [11]. Particularly, we choose K M-sample initial
dictionary seeds from the set {ỹi[n]}Pi=1 that represents a
multidimensional array with P trials from single-channel,
bandpassed traces with variable length; this initial dictionary
is chosen according to the modulatory patterns present in
the sequences, i.e. the envelope is estimated via the Hilbert
Transform and patterns with clear maximum close to the
midline (M/2) are selected. Then, we use the frequency
domain (FFT) to efficiently compute the convolutions that
encode the temporal sequences and further select the patterns
with ℓ2-norm above a certain threshold γ. The resulting
extracted snippets are normalized and stacked in a matrix
Y ∈ RM,Λ with corresponding assignment indexes {Ω j}

Λ
j=1.

Alg. 1 summarizes the encoding stage.

The outputs from Alg. 1 constitute the inputs for the sec-
ond stage of the optimization: dictionary update. We utilize
the first principal component from the samples corresponding
to a particular dictionary atom as the update for such filter.

In a way, it replaces the centroids computation in k-means
by the principal component estimation in this M-dimensional
space. We refine the optimization by replacing the inherent
second-order statistics of singular value decomposition by a
robust analysis via the correntropy measure [12]. For two
random variables X and Y, correntropy is defined as:

Vσ(X, Y) = E[Gσ(X − Y)] (3)

where Gσ(X−Y) is the Gaussian kernel with parameter σ,
also known as kernel width. Specifically, we maximize the
correntropy of the error between the original input space and
the low-dimensional representation. The non-convex nature
of the cost function demands for an alternative procedure; for
this case, we opted for the half-quadratic (HQ) technique [13]
that only requires a stopping threshold for successive esti-
mated bases (set equal to 10−4). One of the main advantages
of such optimization is the simultaneous estimation of σ by
exploiting Silverman’s rule [14]; hence, it does not require
additional free parameters. The final dictionary update algo-
rithm is omitted due to space limitations, however, readers
interested in the specifics can refer to [15], [16].

Likewise k-means, our decomposition approach is greedy
and, consequently, prone to local minima. To avoid such
cases and obtain a locally optimal solution, we alternatively
iterate between both stages for a fixed number of iterations
or when the difference between successive dictionary updates
falls below a threshold (10−4). Lastly, we utilize mutual
coherence [17] as the selection criterion for multiple dic-
tionaries corresponding to different initial conditions:

µ(D) = max
i! j
|dT

i d j| (4)

where di is the i-th atom from dictionary D. We select
the filter bank with the minimum µ(D) that provides the
less ambiguous decomposition. In summary, we introduce
an estimation technique that attempts to extract and cluster
relevant phasic events in EEG based only on two main
free parameters: the duration (in samples) of putative phasic
events, M, and the number of atoms, K.

IV. Experimental Setting

The first subject is a 23-year-old female with tics that are
dystonic in appearance and comprise full arm extensions,
shoulder jerks, neck twisting, grimacing, forceful upward
eye movements, and occasionally groans. Most of the tics
were lateralized to the right side of her body. The second
subject is a 25-year-old female; her tics included cursing,
yelling, blinking, snorting, finger tapping, and head bobbing.
A majority of the tics were centralized to the face. Both
subjects provided informed consent as approved by the
University of Florida Institutional Review Board (IRB-01)
and by the US Food and Drug Administration (FDA) through
an investigational device exemption (IDE).

High resolution T1+Gad and FGATIR MRI [18] alongside
a deformable brain atlas were utilized for target planing
of both bilateral 4-contact CM-PF thalamic DBS leads



Algorithm 1 EEG Decomposition (EEGDecomp).

Inputs: {ỹi[n]}P
i=1,M,D, γ

Outputs:{{(τ j,α j,ω j)}
ni

j=1}
P
i=1

j← 1
for i = 1, . . . , P do

CONTINUE = TRUE, k ← 1
C = conv2D(ỹ⊤i [n], D̃)
ri[n]← max{|C|, 2}
πi[n]← arg max{|C|, 2}
while CONTINUE == TRUE do
η← arg maxn ri[n]
if |C[η][πi[η]]| ≤ γ then

αk ← C[η][πi[η]]
τk ← η − M/2
ωk ← πi[η]
Y[:][ j]← ỹ⊤i [τk − M/2 : τk + M/2]/αk

Ω j ← ωk

k ← k + 1, j← j + 1
else

CONTINUE = FALSE, ni ← k

end if
end while

end for

Λ← j

(Medtronic 3387, Medtronic, LLC, Minneapolis, MN) and
bilateral 4-contact motor cortical subdural strip electrodes
(Medtronic Resume II) through one frontal burr hole on each
side of the skull. Since many tics involved hand and/or arm
movements, the ECoG grid was placed over the hand motor
cortex. The DBS microelectrode was positioned and ad-
vanced using a micropositioner (FHC, Bowdoin, ME) along
the planned thalamic trajectory to allow for physiological
monitoring. The resulting traces were further low-passed and
downsampled to 800 Hz to capture LFP activity alone.

V. Results

We bandpassed the multi-trial traces from each channel
utilizing Q ≈ 1 Butterworth filters. Then, according to
time-frequency analysis and previous studies [19], [20], we
deemed the alpha (8–12 Hz) and beta (13–30 Hz) bands
as relevant by studying the relative power modulation with
respect to the categorized tic marks, i.e. L = 2. Then,
after thorough visual inspection of the bandpassed traces in
the time and frequency domains, we estimated the average
duration of the alpha and beta neuromodulations equal to 500
and 400 ms. (350 ms. for Subject 2), respectively. Next, we
selected a wide range of dictionary atoms (21–26) to assess
its potential effect over behavioral correlates, and, finally, the
threshold, γ, was chosen according to a surrogate probability
density function (PDF) estimated directly from data.

The surrogate PDF is derived from {βM(ỹ[n])k}k, or simply
βM(ỹ[n]), which represents the set of ℓ2-norms corresponding
to the M-sample long snippets from the tensor {ỹi[n]}P

i=1 (P =
5 for both subjects). However, this transform is not just a
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Fig. 2: Estimated PDF of normalized βM(ỹ[n]). Row 1: Subject 1.
Row 2: Subject 2. Column 1: CM-PF. Column 2: M1.
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Fig. 3: ROC curves of tic detectors exploiting alpha and beta
Marked Point Processes. Left. Subject 1. Right. Subject 2.

mere embedding, it is rather a mapping that emphasizes the
modulated patterns present in the bandpassed LFP traces.
It starts by extracting the snippets with locally maximum
envelope close to the M/2 mark and, then, proceeds to extract
the remaining unmodulated M-dimensional vectors until no
samples are left. In this way, βM(ỹ[n]) can be conceived as
the power distribution in the filtered recordings with respect
to an M-dimensional space that strives to preserve the local
temporal structure of the data. Furthermore, we exploit this
PDF to sample potential γ values that are fed to Alg. 1.

In short, we estimate βM(ỹ[n]) for each band and determine
the decomposition threshold based on a range of percentile-
based values (0 to 100) from a surrogate PDF. Fig. 2 de-
picts the estimated βM(ỹ[n]) densities for the aforementioned
M parameters. They resemble the work done by Freeman
when analyzing ECoG during different behavioral tasks [9];
however, he focused on the instantaneous amplitude of the
analytic signal alone, while here, we incorporate the temporal
structure of the data via the M-dimensional embedding.

After extracting the putative phasic events in both bands
and channels according to Alg. 1, we proceeded to match
their timestamps to the categorized tic marks. In particular,
given the sparse nature of the MPP samples and in order
to obtain smooth outputs, we connected temporally adjacent
neuromodulation events if their separation was smaller than
500 and 400 ms. (350 ms. for Subject 2), for alpha and beta
rhythms, respectively. Next, we considered a hit when one
of the two spectral MPPs was active during a scored tic, or a
miss otherwise. Thus, we exploit the information from both
frequency bands to implement a tic detector. We computed
the True Positive Rate (TPR) and False Positive Rate (FPR)
in order to characterize the ROC curve of the on-line detector.



TABLE I: AUC of ROC curves for different K’s.

Subject Sensor K
2 4 8 16 32 64

1 CM-PF 0.80 0.80 0.80 0.81 0.80 0.80
1 M1 0.63 0.64 0.65 0.65 0.64 0.64
2 CM-PF 0.64 0.64 0.64 0.64 0.65 0.65
2 M1 0.60 0.60 0.60 0.61 0.61 0.61
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Fig. 4: Distribution of MPP amplitudes times densities over tic
trials. Subject 1. Beta band. Top: CM-PF. Bottom: M1. γ = 0

As Fig. 3 suggests, the CM-PF thalamus electrode pro-
vides more discriminant information, while the M1 electrode
underperforms in both cases. A useful measure to quantita-
tively compare scenarios is the area under the curve (AUC)
of the ROC plots. Table I shows such measures alongside the
final results for every attempted value of K. Clearly, the tha-
lamus sensor for Subject 1 shows stronger predictive power,
while, on the other hand, the remaining electrodes remain
around the 0.65 mark. A potential reason might have to do
with the specific shapes of βM(ỹ[n]) depicted on Fig. 2. The
estimated PDFs for the best case present well differentiated
peaks with small variance; conversely, the remaining densi-
ties exhibit more overlapping PDFs with wider peaks. This
can be translated as more concentrated activity versus more
diffuse non-target specific neuromodulations, respectively. In
addition, Table I reveals very consistent measures over K,
which suggests a restricted set of prototypical phasic events.

Fig. 4 depicts the histogram of the MPP amplitudes times
the phasic event densities or occurrences; this distribution
clearly illustrates an average increase of beta activity (CM-
PF) starting roughly 500 ms. before tic onset. This can
be interpreted as a relatively increased density of higher-
amplitude phasic events prior to a tic event. The M1 elec-
trode, however, does not show such discriminative predictive
nature and should be subject of further study. Furthermore,
Fig. 5 depicts the timestamps of the MPP samples for a
particular threshold value. It is evident that the estimated
neuromodulations are tightly coupled to the scored tic marks.

VI. Conclusions

We exploited an MPP interpretation of LFP in order
to elucidate behavioral correlates during tics in Tourette
Syndrome patients. The results show a relatively clearer
discriminative nature from the thalamus region and a less ap-
parent correlation from M1. In the future, we can utilize the
particular estimated prototypical atoms, i.e. D, and further
investigate the parameter γ to accurately track the changes
between tic and non-tic stages in order to provide proper
feedback in closed-loop DBS experiments.

Fig. 5: Top: Raw CM-PF trace. Middle: Bandpassed (beta)
CM-PF trace in blue. τ of extracted phasic events in red. Bottom:
Tic marks (low level: no tic, high level: tic). Subject 1. γ = 0.04
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