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Abstract— Electrocorticogram (ECoG) based Brain-
Computer Interfaces (BCI) provide finer spatial resolution and
improved signal-to-noise ratio than its noninvasive counterpart,
Electroencephalogram (EEG). This remarkable feature allows
for processing in higher spectral bands in order to elucidate
more spatially localized encoding mechanisms. We propose
an automatic, fully data-driven method to extract relevant
neuromodulation events from single-channel, single-trial
traces. In particular, our scheme involves two alternating
optimizations that resemble k-means; moreover, correntropy
is utilized to provide robust estimation and protection against
outliers. In this way, we find distinct behavioral correlates in
the low-gamma band (76 - 100 Hz) that encode finger flexion
movements in a cued task. The results show that correntropy
should be used when working with neuronal oscillations due
to the high probability of outliers.

Index Terms— BCI, Correntropy, ECoG, Neuromodulation,
Transient Model

I. Introduction

Neuronal oscillations represent the synchronous average
activity of neural populations in the brain. In general, they are
the result of the spatiotemporal interplay between excitatory
and inhibitory postsynaptic potentials [1] (EPSP and IPSP).
Hence, unlike action potentials, neuronal oscillations encode
information not only via their timings, but also by means of
amplitude, phase, and frequency features [2].

One of the paramount properties of neuronal oscillations
is its correlation to inputs from the outside world, inter-
nal physiological processes, and behavior in general. For
instance, ECoG has been utilized in brain mapping, BCIs,
and epilepsy studies to name a few [3]–[6]. In the current
paper we focus on ECoG-based BCI experiments while,
at the same time, strive to expand our previous studies
on a transient model for neuronal oscillations [7], [8]. In
particular, our approach does not assume stationarity nor
ergodicity; rather, it exploits neurophysiological concepts,
such as transient synchronization of neuronal assemblies
[9], and models a single-channel trace as a noisy spectral
superposition of marked point processes that preserve the
temporal resolution up to the sampling interval scale. In
addition, correntropy is incorporated into the framework in
order to provide robust estimation and protection against
outliers. In this way, the resulting marked point processes
and temporal templates constitute a novel interpretation of
ECoG and neuronal oscillations in general.
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The rest of the paper is organized as follows: Section
2 briefly reintroduces the transient model for ECoG, Sec-
tion 3 details the robust estimation methods while Section
4 describes the experiment and results. Lastly, Section 5
concludes the paper and discusses further research.

II. TransientModel for ECoG

Following the neurophysiological and clinical interpreta-
tion of EEG and neuronal oscillations in general [9], [10],
we proposed an anthropomimetic framework that models a
single-channel trace as the noisy spectral superposition of
marked point processes (MPP) activating patterns over time.
In particular, the point processes are segregated according
to the well-known clinical EEG bands [2]; in this way, the
temporal patterns can be regarded as finite impulse response
(FIR) filters with similar central frequencies. The main
advantage of the model is that it exploits the reoccurring,
transient phasic events inherent to neuronal oscillations.

Fig. 1 depicts the block diagram of the transient model
alongside its 3 main building blocks: MPP features, i.e.
timing, amplitude and index, the set of FIR filters for each
spectral band, and the added noise properties. In equations,
the output of the system, x(t), is a single-channel, single-trial
ECoG-like signal that displays the ever-changing temporal
structure of macrospcopic brain activity.

x(t) = n(t) + x̂(t) = n(t) +

F∑
i=1

yi(t) (1)

yi(t) =

ni∑
j=1

∫ ∞
−∞

αi, jδ(t − τi, j)hi,ω j du (2)

where F is the number of filters banks, i.e. ECoG rhythms
to be analyzed, n(t) is the additive colored noise, α and τ
are the phasic event’s amplitudes and timings, respectively.
Hi = {hi,ω j } is the i-th filter bank, also known as dictionary.
Borrowing terms from sparse modeling, the unit-norm FIR
filters are also referred to as atoms. In short, a sample from
a MPP will modulate a single temporal template from a
filter bank with amplitude α at time τ by means of indexing.
Moreover, Hi ∈ R

M×K , where M represents the duration (in
samples) of putative phasic events, and K, the dictionary
size. The final goal of an analysis scheme is to obtain the
MPP features and FIR filters of a relevant spectral band for
a particular behavioral task without imposing the assumption
of stationarity nor limiting the putative encoding mechanisms
to amplitude modulation alone.
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Fig. 1: Transient Model for ECoG. A single-channel, single-trial
ECoG trace is modeled as the noisy spectral addition of

reoccurring, transient patterns over time.

III. Robust Detection of Neuromodulations

Estimating the model parameters is an example of a blind
source separation problem; particularly, isolating one rhythm
via bandpass filtering reduces the estimation task to learning
one MPP and one dictionary given a single-channel ECoG
recording. If no constraints are given, the final solution will
not be unique; thus, it is imperative to impose conditions that
not only make the problem more accessible, but also that
are neurophysiologically sound. The first constraint is the
presence of non-overlapping phasic events; this is possible
due to the single-scale nature of the bandpassed traces and
will assure that a relevant neuromodulation is represented by
a scaled version of a single dictionary atom. In contrast, other
Time-Frequency decompositions, such as Matching Pursuit
(MP) [11], aim to overrepresent phasic events in order to
minimize the L2 norm of the reconstruction error. The second
constraint attempts to obtain a decomposition as unique as
possible. Specifically, the final estimated dictionary should
have the lowest mutual coherence among all the possible
filter bank candidates. Mutual coherence is defined as [12]:

µ(H) = max
i, j
|hT

i h j| (3)

where hi is the i-th atom or FIR filter from dictionary
H. Two extreme cases are orthogonal bases (µ(H) = 0) and
dictionaries with linearly dependent elements (µ(H) = 1).
The first scenario would yield a unique solution, while on the
other hand, the second decomposition would be ambiguous.
The final version of the estimation algorithm involves two
clear stages: phasic event assignment and dictionary update.
In particular, they resemble the two alternating steps in the
clustering algorithm k-means [13] applied to time series.

A. Phasic Event Assignment

Given a dictionary H, we extract relevant phasic events
that are maximally correlated to such vector space. This is

efficiently computed via 2-dimensional, Fast Fourier Trans-
form (FFT) based convolutions between each single-channel,
single-trial ECoG trace and the 2-dimensional filter bank.
Due to the non-overlapping constraint, this convolution is
computed only once, unlike MP decompositions, where
multiple runs are needed and the computational cost in-
creases considerably. Next, each putative neuromodulation
is sequentially extracted in a decreasing order based on the
absolute value of the decomposition amplitudes, α’s.

During the extraction stage, each temporal snippet con-
tributes with an estimated decomposition timing, τ, am-
plitude, α, and index, ω. Specifically, the timing is esti-
mated with a precision up to the sampling interval, while
ω performs the assignment to the closest dictionary atom.
As previously mentioned, this stage evokes the k-means
encoding process; however for our case, the membership
vector for each putative phasic event counts with a single
graded non-zero entry. The specific details regarding this side
of the estimation scheme are omitted due to space limitations.

B. Dictionary Update

Given a set of labeled M-dimensional samples, i.e. ex-
tracted temporal snippets, we update each element in the
filter bank, H. In k-means, this task is simply the mean or
median value of the assigned samples for each cluster. Here
instead, we are working with oscillating patterns that would
most likely yield a close-to-zero value as average cluster
centroid, e.g. patterns with opposite phase would cancel
each other. For this reason, it is imperative to update each
atom according to a sign-invariant low-rank transformation;
in particular, Singular Value Decomposition (SVD) provides
a principled mechanism for this problem. In addition, ro-
bustness against outliers is incorporated by exploiting the
properties of the correntropy dependence measure.

Correntropy was proposed in [14] as an alternative beyond
second-order statistics and Gaussian conditions. For two
random variables X and Y , correntropy is defined as:

Vσ(X,Y) = E[Gσ(X − Y)] (4)

where Gσ(X − Y) represents the Gaussian kernel with pa-
rameter σ, also known as kernel width. In particular, this
parameter will control the metric correntropy will mimic;
for instance, a very large value will resemble `2 interactions,
while a very well-tuned low value will provide robustness
via `0 penalty-like behavior. In particular as shown in [15],
[16], correntropy can be used as cost function in the SVD
problem when outliers are present and might be potentially
detrimental. For instance, Fig. 2 illustrates these effects
on the estimated principal components for a toy example.
The figure shows how a very low density of outliers can
bias the first principal eigenvector, i.e. all of the input
samples contribute equally to the SVD computation, while
on the other hand, a correntropy-based optimization yields
the original outlier-free principal component.

The robust estimation method fully based on the Half-
Quadratic (HQ) technique [17] is presented in Algorithm 1.



Algorithm 1 Correntropy-based Robust SVD
Input: X ∈ RM×d, ε, µ ∈ RM ,U1 ∈ RM

Output: µ,U ∈ RM

J ← 1
while convergence == FALSE do

r ← ||(xi − µ) − U J(U J)T (xi − µ))||2 i = 1, . . . , d
σ← 1.06 ×min {std(r), IQR(r)/1.34} × d−1/5

xµi ← xi − µ i = 1, . . . , d

pi ← −Gσ(
√

xµT
i xµi − xµT

i (U J)(U J)T xµi ) i = 1, . . . , d
µ← (

∑d
i=1 pixi)/(

∑d
i=1 pi)

Xc ← [x1 − µ, x2 − µ, . . . , xd − µ]
P← diag(−p)
U J+1 ← SVD(XcPXT

c , 1)
if ||U J − U J+1|| < ε then

convergence = TRUE
U ← U J+1

else
convergence = FALSE
J ← J + 1

end if
end while

Specifically, d represents the number of temporal snippets
of duration M associated to a particular cluster centroid,
ε is a stopping threshold, µ is the estimated mean vector,
and U is the final first principal component. As an added
feature, there are no extra free parameters associated to this
method; singularly, the kernel width, σ, is updated and esti-
mated sequentially alongside the first principal component by
exploiting Silverman’s rule [18]. Lastly, the initial values for
µ and U, i.e. U1, can be easily provided via regular average
and SVD operations, respectively. It is worth mentioning that
Algorithm 1 has to be utilized for each dictionary atom, i.e.
each updated atom is the first principal component of the
corresponding labeled M-dimensional samples. Readers can
refer to [16] for further details regarding the algorithm.

In summary, the estimation process involves two alternat-
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Fig. 2: Correntropy-based Robust SVD example. From top to
bottom: Original Gaussian pdf (First Principal Component in red).

10 outliers (5%) are added and SVD is computed. Same
distribution with Correntropy-based Robust SVD eigenvector.

ing stages: phasic event assignment and dictionary update.
The first one is performed via fast FFT-based convolutions,
while the second one exploits correntropy to compute princi-
pal components as updated dictionary atoms. Both stages are
ran until a particular stopping criterion is met, e.g. minimum
variance of estimated atoms. Finally, the optimal dictionary
is chosen according to a minimal coherence criterion.

IV. Behavioral Correlates in ECoG

An ECoG-based BCI was utilized to show the plausibility
of our methods and algorithms. The dataset can be found in
the BCI competition website [19], [20]; namely, 64 channels
(for subject 3) are recorded subdurally in epileptic patients
receiving ECoG monitoring for the localization of seizure
foci. The task consists on cued finger movements (3-5 each
time) with 2-second rest intervals . In order to find behavioral
correlates, the finger flexion traces are recorded using a data
glove, digitized and provided alongside the ECoG data.

The ECoG traces were downsampled to 500 Hz and
bandpassed around the low-gamma rhythm (76 - 100 Hz).
However when dealing with data-driven frameworks and
EEG oscillating activity, it is imperative to select the band-
pass filter parameters in a principled manner, i.e. a compro-
mise between stopband attenuation and ringing artifacts; [21]
stated that a quality factor, (Q), close to one 1 is ideal for
such trade-off. Thus, we utilized a 6-th order Butterworth
filter with Q = 1 and cut-off frequencies 44 and 132 Hz.

Furthermore, after visual inspection of the ECoG record-
ings, we set the duration of putative phasic events to 0.1
seconds; next, the dictionary size was chosen from a range
of values, and, lastly, the alternating optimizations were ran
for a maximum of 20 iterations each with 5 different initial
conditions. Fig. 3 illustrates the learned FIR filters after con-
vergence for the best case scenario and K = 12. It is evident
that the data displays phasic events with diverse modulation
patterns and frequencies. The most striking observation is the
presence of outliers in the distribution of extracted temporal
snippets (red crosses on boxplot insets); hence, our choice of
correntropy as SVD cost function is justified and appropriate.
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Fig. 3: Learned dictionary atoms for channel 9 and K = 12.
Insets show the boxplot of the normalized Euclidean distances

from each labeled snippet to the particular cluster centroid.



0 10 20 30 40 50 60
−0.2

0
0.2
0.4

X
co

rr

0 10 20 30 40 50 60
−0.2

0
0.2
0.4

X
co

rr

0 10 20 30 40 50 60
−0.2

0
0.2
0.4

X
co

rr

0 10 20 30 40 50 60
−0.2

0
0.2
0.4

X
co

rr

0 10 20 30 40 50 60
−0.2

0
0.2
0.4

Channel

X
co

rr

Fig. 4: Encoding of finger flexion is spatially sparse and
well-localized. Average maximum cross-correlation between each

finger flexion trace and a smoothed version of the low-gamma
MPP from each channel. From top to bottom: Finger 1,2,3,4,5.

Next, the MPP features are utilized to find correlates to the
finger flexion traces. A Gaussian kernel is placed on top of
each MPP sample in order to create a continuous signal; then,
we compute the cross-correlation between each finger flexion
trace and the smoothed MPP from each sensor. Fig. 4 depicts
the final result as average maximum cross-correlations. Par-
ticularly, each finger seems to have few relevant areas that
are strongly correlated to its movement, while, most of the
remaining sensors do not contribute to this motor output. As
mentioned in [20], this high-frequency activity serves as a
proxy of the broadband average firing rate of the population
in proximity to the electrode that is correlated to the task.
Similar results are observed for Subjects 1 and 2, but they
are omitted due to space limitations.

Lastly, we chose various dictionary sizes ranging from K =

2 to K = 100. The main findings are summarized in Table I as
the average maximum cross-correlation of the single channel
mostly associated to each finger flexion. In general, the
values increase steadily and reach their maximum at K = 75;
this trend is the result of a richer, more diverse dictionary,
i.e. more distinct, higher-frequency, discriminant patches are
extracted. If modeling is the final goal, then the selection of
the number of clusters becomes more crucial, e.g. underes-
timation would hinder the discovery of discriminant phasic
events in terms of modulatory activity, and overestimation
would derive in biased results due to overfitting.

TABLE I: Average maximum cross-correlation of sensor mostly
associated to each finger flexion for several dictionary sizes

K 2 5 12 25 50 75 100
Finger 1 0.29 0.30 0.31 0.32 0.35 0.38 0.37
Finger 2 0.44 0.45 0.45 0.47 0.48 0.49 0.49
Finger 3 0.41 0.42 0.45 0.45 0.46 0.46 0.46
Finger 4 0.40 0.42 0.43 0.43 0.46 0.46 0.44
Finger 5 0.40 0.42 0.43 0.44 0.45 0.47 0.46

V. Conclusions and FurtherWork
We have used a robust, data-driven, unsupervised, alter-

nating optimization scheme that learns ECoG phasic events

positively correlated to finger flexion tasks. In the future, we
intend to analyze additional spectral bands, study principled
techniques to choose the dictionary size parameter, utilize
the MPP samples to assess spatial interactions and address
the noise term in the transient model.
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