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ABSTRACT 

 
We introduce a novel, transient model for the 
electroencephalogram (EEG) as the noisy addition of linear 
filters responding to trains of delta functions. We set the 
synthesis part as a parameter-tuning problem and obtain 
synthetic EEG-like data that visually resembles brain 
activity in the time and frequency domains. For the analysis 
counterpart, we use sparse approximation to decompose the 
signal in relevant events via Matching Pursuit. We improve 
this algorithm by incorporating the Gini Index as a stopping 
criteria; in this way, we promote sparse sources while, at the 
same time, eliminating one of the free parameters of 
Matching Pursuit. Results are presented using synthetic 
EEG and BCI competition data. Statistics of the model 
parameters are more informative and posses finer temporal 
resolution than classical methods such as Power Spectral 
Density (PSD) estimation. 
 

Index Terms— EEG, Gini Index, Matching Pursuit, 
Sparsity, Transient 
 

1. INTRODUCTION 
 
EEG is a noninvasive technique used to record brain activity 
at the scalp level. In terms of digital signal properties, it 
presents appropriate temporal resolution due to its relatively 
high sampling frequency. Usually, it is utilized as a tool to 
quantify sleep stages [1,2,3], states of consciousness [4,5], 
physiological and pathological conditions [6,7,8] and even 
as a rehabilitation technique through Brain-Machine 
Interfaces [9,10]. Some of these applications, however, 
operate under the strong assumptions of stationarity and 
linearity. Furthermore, it is well known that the structure 
and nature of this type of brain signals rely on nonlinearities 
and transient events coming form the basic signal processing 
performed in the brain via spikes or action potentials. 
Therefore, the utilized statistical approaches are 
incompatible with the actual nature of EEG. In fact, 
electroencephalographers and neurophysiologists learn to 
extract clinical information from the EEG by eye balling in 
time the phasic events and rhythms of the signal [1].  
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In this work we introduce a novel, transient model for 

EEG signals where the relevant events of the recording are 
posed as marked point processes activating temporal filters.  
Specifically, the filters are grouped according to the well-
known, functional EEG rhythms. The transient nature of the 
marked point processes allows us to translate this problem 
to a more convenient, mathematical framework where 
sparsity must be encouraged. For the analysis part of the 
model, we pose it as a sparse approximation problem where 
Matching Pursuit is used as a greedy, fast approximation of 
the optimal solution. The final results not only encourage 
sparsity by introducing a Gini Index-based Matching Pursuit 
decomposition, but they also highlight the increase in the 
number, and therefore, richness of features available in 
comparison to classical PSD analysis. 

The rest of the paper is organized as follows: Section 2 
introduces the novel, transient model; section 3 provides the 
necessary tools for the analysis part of the system, including 
Matching Pursuit and its improvement by using the Gini 
Index. Section 4 presents results on synthetic data and BCI 
Competition recordings available online, and, finally, 
section 5 provides conclusions and further work. 
 

2. TRANSIENT MODEL FOR EEG 
 
Following the clinical interpretation, we will model the EEG 
as the result of transient events over time that encode 
information concerning a particular physiological or 
pathological state, immersed in a noisy background. When 
comparing to other methods [11], this assumption is closer 
to reality because it produces a non-stationary time series. 
Additionally, it is well known that the human brain is 
exquisitely regulated to provide a constant level of neural 
excitatory activity, which means a constant change of state 
because of the interaction with a non-stationary world; a 
good example is the compromise between selective attention 
and habituation that takes place in the brain in response to 
stimuli [12].  

Fig. 1 illustrates the block diagram of the proposed 
transient model, described by, the following equations, 
where x(t) is the resulting EEG-like signal. 

              x(t) = n(t)+ x̂(t) = n(t)+ yi (t)
i=1
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where L is the number of filter banks, α is the 

amplitude, n(t) is the noise and hi,ω(t) is also known as an 

atom in a dictionary Hi={hi,ω}. 

 
Fig. 1. Transient model for EEG. Each pulse has an associated feature 

vector with its timing, amplitude, duration, Q factor and index with respect 
to its  corresponding filter bank. A sequence of pulses is known as a source. 
Hi(t) denotes the filter bank for source i. n(t) represents a  single realization 

of a Gaussian, pink noise stochastic process. 
 

In this way, each pulse activates a particular filter from 
its corresponding filter bank by indexing an element via ωj. 
Also, yi(t) constitutes the contribution of all the convolutions 
of the pulses for filter bank i. Additionally, we will refer to 
the sequences of pulses as sources of the system, and to the 
filter’s impulse responses, as events. 

We must emphasize the fact that the proposed system 
introduces sparse sources via the logical connection of each 
pulse as a sample of a marked point process [13] where the 
features constitute the amplitude and index with respect to 
the filter bank. In addition, the filter bank can have 
properties on its own that can provide richer and more 
specific features to the model; for instance, each filter may 
posses a particular Q factor, central frequency and number 
of taps in the case of FIR band pass temporal filters. 

As will be mentioned in Section 4, the importance of 
this synthetic model is not only the fact that the output 
signal visually resembles EEG in the time and frequency 
domains but that it can also be used as ground truth when 
performing studies that deal with analysis or spectral 
estimation for the analysis part of the problem. 
 

3. TRANSIENT ANALYSIS OF EEG 
 
3.1. Sparse Approximation 
 
Our main goal is the analysis or decomposition of brain 
electrical activity recordings, i.e. estimate all the unknown 
parameters from a single channel EEG recording. This can 
be identified as an undercomplete blind source separation 
problem where tools such as ICA [14,15] could be applied 

exploiting the nonstationary nature of the EEG [16]. 
However, the scope of this paper deals with a restricted 
version of source separation known as sparse approximation 
[17] where we have access to an overcomplete dictionary of 
atoms, or events, that will decompose the signal using a 
particular criterion. 

In general for vectors in a finite-dimensional Hilbert 
space, CΛ , the sparse approximation problem can be posed 
as follows: 

min
Λ⊂Ω

  min
b∈CΛ

  x − bλϕλ
λ∈Λ

∑
2

 subject to |Λ|≤m     (3) 

Where x is the input vector, D={ϕλ} is the dictionary 
matrix which is indexed by Ω. Finally, m is a fixed, positive 
integer that will determine the number of atoms extracted 
from the dictionary. The inner minimization is a least square 
problem and a classic example is the Fourier decomposition 
of vectors where the dictionary atoms are complex sinusoids 
in a discrete frequency space for the case of sampled 
signals. The outer minimization, however, is combinatorial, 
also known as NP-hard. This type of situations is well 
known to have intractable solutions. Moreover for the time 
series case, it is necessary to take into account all the 
possible shifts of every single atom in the dictionary, which 
makes the problem even more complex. Possible solutions 
include L1 relaxations such as Basis Pursuit [18]; yet, we 
use here a greedy method known as Matching Pursuit (MP). 
 
3.2. Matching Pursuit 
 
MP was proposed by Mallat and Zhang [19] as a greedy 
alternative to solve (3). We modified the initial cost function 
in order to accommodate the time structure of the signal by 
performing cross-correlation instead of inner product. In this 
way, we are able to efficiently compute the decomposition 
amplitudes and timings via FFT implementations of 
correlation. For the continuous time case, the algorithm is 
detailed next: 

 
Fig. 2. Matching Pursuit. Time Series Implementation. P atoms in D={ϕλ} 

 
Although fast and efficient, there is one major 

conceptual problem with this implementation: the number of 
events must be known beforehand. This is a strong 
assumption, especially when dealing with transient events. 
For instance, if the free parameter m is chosen too low, the 
decomposition events will most likely correspond to the low 



frequencies (because of the inverse relationship between 
EEG power and frequency) and leave some relevant events 
out of the decomposition at high frequency. On the other 
hand, if m is chosen too high, the sources will start to 
overpopulate and the sparsity assumption becomes 
meaningless. This last case is the one most utilized in the 
literature [20,21], where other criteria such as incoherence 
of the residue with the dictionary or threshold on the 
reconstructed signal power are mere proxies of the 
parameter m. It is also worth noting that, for our case, the 
free parameters escalate because we are running Matching 
Pursuit for each available frequency band. 

For our case, we cannot set a particular value of the 
parameter m without explicitly affecting the sparsity of the 
sources and the reconstructed signal. For this reason, we 
decided to use a different measure of sparsity as stopping 
criteria for Matching Pursuit: the Gini Index. 
 
3.3. Gini Index-based Matching Pursuit 
 
The Gini Index, also known as Gini Coefficient, is vastly 
used to measure inequality in wealth distribution. For 
vectors with positive support and elements sorted in an 
ascending fashion, it is calculated according to (4): 
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Furthermore, Hurtley and Rickard [22] performed an 

exhaustive study of measures of sparsity under 6 basic 
principles and concluded that the only one that satisfies all 
of them is the Gini Index. They also made a compelling 
argument regarding the analogies between distribution of 
wealth and distribution of power in signal processing, and 
proposed that sparsity is equivalent to inequity of wealth 
distribution, e.g. an equitable distribution of wealth is a low 
sparsity case close to zero; and, an inequitable distribution 
of wealth is analogue to an increment in sparsity, with the 
limit being equal to one when only one coefficient carries all 
the power of a signal. 

Our proposed modified version of Matching Pursuit is 
detailed next.  

 
Fig. 3. Gini Index-based Matching Pursuit Algorithm 

Basically, we keep track of the normalized 
reconstructed signal power and stop the decomposition 
when the maximum in the Gini Index is achieved; this 
implies that the next element after the maximum will not 
contribute relatively much to the decomposition; hence, it is 
not necessary to be taken into account. 

Even though a simpler method can be implemented 
where a threshold is set on the normalized reconstructed 
signal power, it would still need a parameter and it would 
not explicitly promote sparsity. With this new 
implementation we have a parameter-free Matching Pursuit 
stopping criteria that promotes sparse sources. 
 

4. RESULTS 
 
The first results were obtained using the proposed model to 
effectively generate time series that visually resemble EEG 
in the time and frequency domain. Specifically, the 
parameters of the sources were modeled as samples from 
exponentials and uniform distributions for the amplitudes 
and timings, respectively. Additionally according to 
previous studies [20,23], it has been shown that sinusoid 
segments, spikes, and Gabor filters provide a suitable sparse 
representation of EEG signals. The sparsity is mainly 
accomplished by the induced overcompleteness of the 
dictionary. Hence, a particular EEG structure can be 
represented efficiently with fewer components. We decided 
to use temporal Gabor filters dictionaries with a 0.5 Hz-
interval discrete frequency grid. As an additional restriction, 
we set the maximum duration of the filters to 1 second 
resulting in a total of 834 atoms. The final step was selecting 
the number of components for each band; for this synthetic 
type of data, we allocated 3, 4, 4 and 5 atoms for the theta, 
alpha, beta and gamma bands, respectively.  

Fig. 4 depicts the average PSD estimator of these 
signals for several SNR values under the same parameter 
conditions. It is evident that, for low SNR values, the signal 
behaves similar to the power distribution of pink noise. 
However, as the SNR increases, more peaks at discrete 
frequencies start to appear. This is a consequence of the 
discrete frequency grid of the Gabor filters in the 
dictionaries of each band. 

 
Fig. 4. Average PSD estimator of synthetic EEG-like data generated by the 

proposed model. 100 different trials were generated per SNR value. The 
right corner shows a sample time series for SNR = 15 dB. 



We ran the novel Gini Index-based Matching Pursuit 
implementation on the theta, alpha, beta and gamma bands 
separately with each corresponding synthesis dictionary. 
The number of events was recorded as the number of 
iterations it took to arrive to the first maximum of the Gini 
Index sequence. A total of 100 2-second long trials were 
simulated with different SNR levels. Fig. 5 shows the 
average number of events found for each band and it 
confirms that our method strives to recognize the same 
number of original events that synthesized the signal. 
Specifically, our method stabilizes after a particular SNR 
value and remains detecting the accurate number of events 
present in each frequency band. It is also evident that 
gamma atoms are harder to find when the SNR level is low 
due to the inverse relationship between amplitude and 
frequency in the synthetic signal. 

 
Fig. 5. Number of events detected by Gini-Index Matching Pursuit 
algorithm. From top to bottom: Theta band, Alpha band, Beta band, 

Gamma bad. Blue corresponds to the ground truth and red indicates the 
average estimated number of atoms for different levels of SNR 

 
The next results use BCI competition data. Specifically, 

dataset IIIb was used where the subject is asked to imagine a 
motor task in order to move a cursor left or right in a screen 
in front of him. Additionally, two bipolar electrodes were 
provided from the somatosensory region of the scalp 
corresponding to C3 and C4 according to the 10-20 EEG 
system; details about the data and a similar experiment can 
be found at [24,25]. 

In order to analyze different data modes, we segmented 
it into a rest stage from 0 to 2 seconds and an action stage 
from 2 to 4 seconds. The action stage is further subdivided 
according to the left and right classes. After performing PSD 
analysis, there is a clear difference between left and right 
classes when comparing modulated power in the alpha band 
for both electrodes (image not shown). However, by 
windowing the data, all the information contained in the 
time domain is lost and one of the main properties and 
advantages of EEG recordings is wasted: high temporal 
resolution. On the other hand, by performing a sparse 
decomposition analysis, we can obtain information 
regarding the particular number of relevant events for each 
task alongside all their features. Fig. 6 illustrates the number 
of events and the potential of this new method; whereas 
PSD analysis does not have the notion of relevant events, 

our algorithm finds a sparse representation that provides 
even more information than classical analysis. Again, an 
appropriate Gabor filter-based dictionary was utilized. 

 
Fig. 6. Average number of events per band and electrode detected by Gini-

Index Matching Pursuit algorithm. Class 1: right task. Class 2: left task. 
 

Lastly, Table I shows the average values of the 
amplitude and inter-event times of alpha-events for both 
tasks. It is remarkable that power discrimination is still 
preserved even with a reduced number of atoms; also, inter-
event timings might not show discriminability between 
tasks, however, they do differ to the rest stage inter-event 
timing. This is reasonable because each condition is an 
active state, so we do not expect necessarily a difference 
between classes because of intercortical connectivity, but 
both differ from rest. It is also possible to perform a similar 
analysis for all the additional features obtained after 
decomposition.  

 
TABLE I. Average values of amplitude (adimensional) and inter-event 

times (seconds) for both classes and electrodes. Alpha band. Average inter-
event timing for rest stage = 0.3090 s. 

 Class 1 Class 2 
 Amplitude Inter-event  Amplitude Inter-event 

C3 10.69 0.3120 8.45 0.3200 
C4 8.37 0.3200 10.80 0.3040 

 
5. CONCLUSIONS AND FURTHER WORK 

 
We introduced a novel, transient model for EEG signals 

where the synthesis part provided time series visually 
similar in time and power distribution to real brain activity. 
The analysis counterpart was handled as a sparse 
approximation problem where Matching Pursuit was 
regulated using the Gini Index in order to promote sparsity 
and eliminate the free parameter of this greedy method. The 
final result is a set of sparse sources with fine time 
resolution and richer information regarding frequency, 
amplitude and shape of the relevant events of brain activity.  

Further work includes statistical inference, 
discrimination and relationship between the different 
features of the sparse sources across time, location (such as 
electrode locations) and frequency bands. 
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