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Abstract—We introduce a novel variation on the well-known
Matching Pursuit (MP) algorithm. In particular, the sparse
approximation problem is solved in a greedy scheme using
estimated higher-order statistics as similarity measures instead
of the somehow limited second-order statistics that perform
optimally only under Gaussian assumptions. This is conveyed
via the generalized correntropy (GC) function instead of the
cross-correlation approach usually utilized in stochastic random
processes applications. Additionally, extra flexibility is achieved
by the GC parameters that control the behavior of the induced
metric. The result is the robust Generalized Correntropy Match-
ing Pursuit (GCMP) algorithm. Furthermore, we present results
on two different frameworks dealing with detection and sparse
approximation and highlight the robustness of this method in the
presence of high-tailed impulsive noise.

Index Terms—Generalized Correntropy, Impulsive Noise,
Matching Pursuit, Sparse Decomposition

I. Introduction

Sparse representations have found a wide range of appli-
cations in the machine learning, data mining, and signal pro-
cessing communities. In particular, sparse coding, compression
algorithms, denoising and optimization constitute some of the
most relevant areas of study that integrate sparsity as a key
framework feature [1]–[3]. In particular for stochastic random
processes, sparse decomposition strives to find a parsimonious
representation of the time series given that appropriate bases
are provided. However most of the times, due to partial knowl-
edge of the underlaying generative system or the presence of
noise, this task is reframed as sparse approximation.

Matching Pursuit [4] provides a fast and efficient local
solution to this problem by iteratively selecting the highest-
correlated atom in an overcomplete dictionary. In addition, the
signal representation is not constrained by the Heisenberg un-
certainty principle or the wavelet limitation regarding narrow
high frequency support. Thus, it has been widely applied to
analyze non-stationary time series [5]–[7]. Event though MP
is robust against additive white Gaussian noise (AWGN), there
is no literature at the time of this paper regarding MP under
non-white noise environments. Hence, we propose correntropy
[8] as an alternative similarity measure that exploits higher-
order statistics of the data. In this way, robustness against
high-tailed impulsive noise can be incorporated to the sparse
approximation framework.
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In particular, the generalized correntropy function utilizes
the Generalized Gaussian density (GGD) and presents addi-
tional shape parameters that expand even further the range of
possible induced metrics correntropy possesses. Consequently,
GC not only generalizes correntropy, but it also generalizes
second-order statics metrics, such as cross-correlation, by
behaving like L2 norm when the parameters are properly set;
in this way, one of the lower bounds of GC is the already well
utilized MP.

The rest of the paper is organized as follows: Section 2
introduces the generalized correntropy function while Section
3 details the Matching Pursuit implementation using the GGD
as cost function. Section 4 presents results on two different
types of data and applications, and finally Section 5 concludes
the paper with a brief summary and further research directions.

II. Generalized Correntropy

Correntropy was introduced by Liu, Pokharel, and Principe
as an attempt to overcome the inherent limitations when
working under second-order statistics and Gaussian conditions.
Specifically, cross correntropy, or simply correntropy, is a
generalized similarity measure between two random variables
X and Y:

Vγ(X,Y) = E[κγ(X − Y)] (1)

where κγ(X−Y) represents a kernel operator with parameter
vector γ. Moreover, if the kernel satisfies Mercer’s Theorem
[9], it induces a nonlinear mapping from the input space to an
infinite dimensional reproducing kernel Hilbert space (RKHS).
In this case, it has been proved that correntropy is a second-
order statistic of the mapped feature space data, while, at the
same time, incorporates higher-order moments of the random
variable E = X − Y by varying the values of the kernel pa-
rameter vector. This allows to define independence of random
variables in a more strict manner, i.e. uncorrelatedness in the
feature space translates to independence in the input space.
Thanks to these attractive properties, correntropy has become a
widespread tool in the signal processing and machine learning
realms, e.g. classification, clustering, adaptive signal process-
ing, non-linearity tests, non-linear dimensionality reduction,
robust filtering, and estimation theory [10]–[18] to name a
few.

Most of the aforementioned applications have utilized the
Gaussian kernel as the preferred mapping function mostly
due to its positive semidefinite property, compliance with
Mercer’s Theorem, and computational tractability. However,



it is possible to incorporate additional degrees of freedom
and expand the range of possible properties of the correntropy
function. One alternative proposed by Chen et al. [19] is the
Generalized Gaussian density, defined by [20] as:

Gα,β(e) =
α

2βΓ(1/α)
exp
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where Γ(.) is the gamma function, α > 0 is the shape
parameter, and β > 0 is the scale (bandwidth) parameter,
i.e. for this case the kernel parameter γ is a two-dimensional
vector, instead of a unidimensional value, as in the case
of the regular Gaussian distribution. Moreover, special cases
of the GGD include the Laplace (α = 1) and Gaussian
(α = 2) densities, and a Uniform distribution over (−β, β) when
α→ ∞. In practice, in order to incorporate the GGD into the
correntropy framework, it is necessary to estimate the true
mapping via averages of the available samples of the random
variables X and Y , i.e. {(xi, yi)N

i=1}. Hence, the sample estimator
of the now known as generalized correntropy is

V̂α,β(X,Y) =
1
N

i=N∑
i=1

Gα,β(xi − yi) (3)

Finally, it is worth mentioning that with the additional
degrees of freedom GGD provides, it is feasible for the
generalized correntropy induced metric (GCIM) to behave like
different norms depending on the region, i.e. from L∞ to L0,
while, on the other hand, the metric induced by a Gaussian-
based correntropy mapping only spans from L2 to L0.

III. Generalized CorrentropyMatching Pursuit

The sparse approximation problem can be posed as an
constrained optimization, i.e. in general, for vectors in a finite-
dimensional Hilbert space CΛ:

minΛ⊂Ωminb∈CΛ
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subject to|Λ| ≤ m (4)

where x is the input vector, D = {ϕω : ω ∈ Ω} is the
dictionary matrix where each one of the its columns is known
as an atom; lastly, b is a list of complex-valued coefficients.
If the outermost constraint is ignored, the inner minimization
is a least square problem where well-known methods can be
utilized; the outer minimization, however, is combinatorial and
intractable solutions may surface. This is also categorized as
an NP-hard scenario. Possible solutions involve L1 relaxations
such as the Basis Pursuit algorithm [21], L2 norm use instead
of the original L0 condition which gives raise to the Method
of Frames (MOF) [22] and locally optimal algorithms, also
known as greedy, that preserve the L0 norm-based sparsity
constraint. From this last category, Matching Pursuit is the
most prominent alternative due to its fast implementation and
exceptional resolution in both temporal and spectral domains
when applied to time series.

Particularly, MP finds the maximum-correlated atom at each
iteration, then, linearly subtracts its contribution and repeats
the process with the current residue. The decomposition stops

after a particular criterion has been met, for instance L runs of
the algorithm. Ideally, the reconstructed signal monotonically
converges to the original vector in a mean-squared sense, i.e.
the reconstruction error power is a non-decreasing function of
the number of iterations. Additionally, if the similarity measure
is assessed by inner products and the random variables are em-
bedded in time, i.e. stochastic random processes, it is possible
to modify the initial cost function in order to accommodate the
temporal structure of the data by performing cross correlations
instead of inner products. This allows to efficiently compute
the decomposition amplitudes and timings via Fast Fourier
Transform (FFT) routines. MP has been thoroughly studied
and extended by the scientific community; among the most
notable variations, we find Orthogonal Matching Pursuit [23],
CoSaMP [24], and Kernel Matching Pursuit [25] to name a
few.

Nevertheless when working with time series, MP and its
extensions usually assume AWGN as the prevalent, most com-
mon case even though regular metrics based on second-order
statistics, such as inner product or cross correlation, can only
perform optimally under Gaussian conditions. Furthermore,
one of the main features of correntropy is its robustness
against heavy-tailed impulsive noises that are commonly as-
sociated to large-amplitude outliers. Hence, it is advantageous
to combine this attractive property of correntropy with the
greedy approach MP has and the extra flexibility present in
the GGD; this results in the Generalized Correntropy Matching
Pursuit algorithm. Basically, the inner product is replaced by
the generalized correntropy function between each one of the
dictionary atoms and an M-dimensional time embedded vector,
i.e. xi = [x[i − M + 1], x[i − M + 2], . . . x[i]]T . Likewise MP,
the algorithm stops after a particular criterion has been met;
throughout this paper, we use a fixed number of iterations for
such condition. The details of this novel variation of Matching
Pursuit is presented in Algorithm 1.

Algorithm 1 Generalized Correntropy Matching Pursuit
Parameters: α, β, L

r[n]← x[n]
for i = 1 . . . L do

for j = M . . . N do
bq[ j] = V̂α,β(ϕq, rj) q = 1, . . . , P

end for
pi ← argmaxqmaxnbq[n]
τi ← argmaxnbpi [n]
ψi ← bpi [τi]

r[n]← r[n] −
u=∞∑

u=−∞
ψiδ[n − τi − u]ϕpi [u]

end for

IV. Results

A. Detection on Synthetic Data

The first set of results focus on robust detection of events
and their corresponding timings in a synthetic time series
corrupted by noise. Specifically, a discrete time signal consists



of scaled versions of non-overlapping atoms from a 50-
dimensional Discrete Cosine Transform (DCT) dictionary;
moreover, there is no repetition of bases, the scaling is limited
between 0 and 1, and the total length of the time series is 5000
samples. Then, noise with the following distribution is added:

pZ(z) = qN(0, 0.1) + (1 − q)N(a, 0.1) + (1 − q)N(−a, 0.1) (5)

This pdf describes what is known as high-tailed impulsive
noise where high-amplitude events occur at low rates; thus,
they characterize outliers. Fig. 1 illustrates an example of the
time series for q = 0.9 and a = 100. For this case, we assume
we have access to the true dictionary and utilize it for the
analysis part. Moreover in order to assess proper detection of
the scaled atoms over time, we compute the true positive rate
and compare the average performance of Matching Pursuit and
Generalized Correntropy Matching Pursuit over a wide range
of SNR values. We also know the ground truth here in terms
of number of relevant events present in each time series, i.e.
50; thus, we ran the sparse decomposition algorithms for 50
iterations only. Finally for this first experiment, we set α = 2
and β =

√
2σ, i.e. Gaussian distribution similarity measure.

Fig. 2 depicts the average results over 100 simulation trials
per SNR value. It is evident that smaller kernel widths exhibit
the best consistent behavior; this was expected due to the L0
norm-like behavior the correntropy induced metric (CIM) pos-
sesses for such kernel parameters. In addition, it is remarkable
how the lower performance bound for this correntropy-based
detector is the regular matching pursuit curve. This constitutes
an appropriate proof of concept that reaffirms the fact that
correntropy displays characteristics comparable to standard
metrics.Finally, as the SNR increases, all the variations of
GCMP and MP converge to the same true positive rate due to
the relative reduction of high-amplitude outliers.

B. Sparse Decomposition Under Impulsive Noise

For the next experiment, we used a voice recording of
the word ”gabor” sampled at 1 KHz. The goal is to solve
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Fig. 1: Upper plot: Sample clean signal over time. Lower plot:
Sample signal plus impulsive noise (SNR=2 dB)
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Fig. 2: Average true positive rate for MP and GCMP for α = 2 and
different kernel width values. The standard deviations are not shown

due to comparable range over methods and for visual purposes.

the sparse approximation problem under no knowledge of
the true generating dictionary in addition to the presence of
strong outliers that resemble skips in the voice recording. For
the analysis dictionary, we utilized a 100-dimensional DCT
dictionary that provides appropriate temporal and spectral
resolution. Once again, impulsive noise is added according
to equation 5; for this case q = 0.99 and a = 1000000 in order
to emphasize the outliers components of the noise.

Next, we generated 100 different realizations of the noise
process, added it to the voice recording and varied the SNR.
MP and GCMP is ran for 75 iterative trials and the normalized
power of the reconstructed signal is considered as performance
metric. Fig. 3 shows one set of sample results.
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Fig. 3: Example of sparse approximation of the word ”gabor”
under strong outlier noise. From top to bottom: Original clean

signal. Signal plus impulsive noise (SNR=2 dB). Reconstructed
signal using MP. Reconstructed signal using GCMP



Particularly, Matching Pursuit completely ignores part of
the vowel ”a” due to the presence of impulsive noise, i.e.
it assumes there is no underlaying relevant events on that
block of data. While on the other hand, Generalized Corren-
tropy Matching Pursuit preserves that snippet and successfully
eliminates the outlier noise components. Furthermore, Fig. 4
depicts the average results for a fixed α = 1.5 and a range of
β parameters over different SNR values. GCMP consistently
outperforms MP for β = 1; however, smaller kernel sizes
seem to perform suboptimally. This phenomenon has to be
further studied; however it might have to do with the interplay
between the GDD parameters and the fact that for α < 2,
the generalized correntropy function will not default to a L2
metric behavior. Additionally, Table I summarizes the average
results for SNR= 2 dB and several combinations of the GDD
parameters. It is worth noting that for cases when α < 2, the
normalized power monotonically increases until achieving the
best results at high kernel widths. On the other hand when
α > 2, there is clear maximum around β = 1; after that point,
the curve decreases and even reaches the lower bound of MP
when α = 2. Hence, we are able to demonstrate that GCMP is
effectively able to recover the original signal under impulsive
noise scenarios.

TABLE I: Average normalized reconstructed signal power of the
word ”gabor” under impulsive noise. SNR = 2 dB (MP result for

this case = 0.93)
aaaaaa
α β 0.25 0.5 0.75 1 5

0.5 0.65 0.70 0.73 0.75 0.79

1.0 0.83 0.86 0.88 0.89 0.94

1.5 0.78 0.82 0.91 0.97 0.99

2.0 0.71 0.82 0.98 0.96 0.93

2.5 0.64 0.83 0.91 0.91 0.90
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Fig. 4: Average normalized reconstructed signal power of the word
”gabor” under impulsive noise. MP and GCMP results for α = 1.5
and several β values. The standard deviations are not shown due to

comparable range over methods and for visual purposes.

V. Conclusion

The Generalized Correntropy Matching Pursuit allows to
incorporate the Generalized Gaussian Distribution as the sim-
ilarity measure for an iterative, local, greedy solution of the
sparse approximation problem. Experimental simulations on
detection open the possibility to utilize this technique for
channel access methods such as CDMA and even the pervasive
GPS system. In addition, the algorithm is able to efficiently
recover signals under strong impulsive noise giving as result
a sparse representation with remarkable temporal and spectral
resolutions.
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