
 

  
Abstract—We propose a robust alternative the well known 

dictionary learning technique K-SVD. Specifically, we exploit the 
theory behind M-Estimators to incorporate robustness into the 
sparse coding stage of K-SVD, and hence, decrease the estimation 
bias that might be introduced when outliers are present. Five 
different M-Estimators are introduced alongside their optimal 
hyperparameters in order to avoid parameter tuning by the user. 
In this way, the proposed framework has the same number of free 
parameters as K-SVD with the added feature of robustness and 
improved performance in non–Gaussian environments. We 
thoroughly demonstrate the superiority of the proposed 
algorithms via recovery of generating dictionaries for synthetic 
data and image denoising under two types of non–homogenous 
noise—salt and pepper noise, and impulsive noise. 
 
keywords——Dictionary Learning, Image Denoising, K-SVD, 

M-Estimators, Robust Estimation  

I. INTRODUCTION 
ICTIONARY LEARNING and sparse coding are two of the 
main building blocks in sparse modeling. They both 

harness the principles of parsimony regarding the 
representation of a given phenomenon with as few variables as 
possible. In linear terms, sparse coding decomposes the inputs 
as the sum of weighted contributions from a given basis 
(usually overcomplete to encourage sparseness), also known as 
dictionary. Examples of such off–the–shelf dictionaries are the 
Fourier complex sinusoids, wavelets, and collection of Gabor 
patterns, either localized in space, time, or frequency. Yet, the 
real advantage of dictionary learning came with the work of 
Olshausen and Field [1] in neuroscience—they provided a bona 
fide proof of concept of a fully data–driven scheme to estimate 
said bases in an unsupervised fashion. 
 Sparse modeling has found a wide range of applications in 
the fields of Image Processing and Computer Vision [2], e.g. 
denoising [3-4], inpainting [5], and demosaicking [6] to name a 
few. Most of these applications rely on the well known 
dictionary learning technique known as K-SVD [7]. Essentially, 
the algorithm exploits block coordinate descent (BCD) to reach 
a local stationary point of a constrained linear problem. Results 
are theoretically optimal under Gaussian noise assumptions. 
However, if the underlying degradation deviates from 
normality, e.g. noise drawn from long tail distributions, missing 
pixels, salt and pepper noise, or impulsive noise, the estimators 
might introduce a bias in the dictionary elements.  
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    Robust M-Estimators are a principled alternative to deal with 
outliers in linear regimes [8-9]. They exploit cost functions that 
go beyond the widely used Minimum Squared Error (MSE) 
criteria, which is optimal only for Gaussian scenarios. In this 
way, robust estimators adaptively assign lower importance (by 
means of weighing) to samples deemed as outliers. This option 
was explored in the sparse coding setting under the term 
RobOMP [10], where M-Estimators were incorporated into one 
of the most widely used sparse decomposition algorithms—
Orthogonal Matching Pursuit [11]. Now, we propose a fully 
robust sparse modeling framework where RobOMP is one of 
the underpinnings of K-SVD in order to replace its inherent 
MSE criterion with robust measures from the theory of  
M-Estimators. The result is M-Estimators–based K-SVD, or 
MeK-SVD for short. 
 The five variants of MeK-SVD are thoroughly tested and 
compared to benchmark state of the art algorithms. Recovery of 
ground truth generating dictionaries with synthetic data and 
image denoising under two types of non–homogenous noise 
(salt and pepper, and impulsive noise) confirm the superiority 
of the proposed techniques over K-SVD. The rest of the paper 
is organized as follows: Section 2 details the problem of 
dictionary learning alongside the state of the art. Section 3 
introduces M-Estimators and the robust variants of K-SVD. 
Section 4 summarizes the results, and lastly, Section 5 
concludes the paper and outlines potential further work. 

II. DICTIONARY LEARNING 

Let ,  be a set of observations, 
measurements, or inputs. A sparse model poses each vector as 
a sparse linear combination of predictors, or atoms, from an 

overcomplete basis, or dictionary , plus noise:  

   (1) 

where  is the support of the ideal sparse decomposition , 

 stands for the  pseudonorm (number of non–zero 

components), and n is the additive noise. Whereas sparse 
coding deals with estimating , i.e. inference on the sparse 
linear model, sparse modeling, or dictionary learning, refers to 
estimating the dictionary atoms under the conditions of (1). 
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A. OMP as a solution to the Sparse Coding problem 
Orthogonal Matching Pursuit [11] attempts to find a local 

solution to (1) by iteratively estimating the most correlated 
atom in D to the current residue. Namely, for the j-th iteration: 

   (2) 

where , ,  is the i-th column of D, and 
 denotes inner product. The locally optimal atom is added 

to an active set , i.e. . Then, the sparse code is 

estimated as: 

   (3) 

which is solved via Ordinary Least Squares (OLS). The residual 
is then updated as . In practice, OMP runs for a 

fixed number of iterations, L, or until the norm of the residual 
error reaches a set lower bound. As (3) suggests, OMP 
inherently exploits MSE as the cost function to optimize; 
therefore, any form of outliers (in the Gaussian sense) would 
severely bias the resulting sparse code. 

It is worth noting that OMP is not the only solution to the 
sparse coding problem. In fact, OMP is a refinement of 
Matching Pursuit [12]; whereas the former updates the entire 
support set via (3), the latter updates it sequentially one atom at 
the time. OMP also has refinements of its own—Generalized 
OMP (GOMP) [13], Regularized OMP (ROMP) [14], and 
CoSaMP [15] to name a few. On the other side of the greedy 
solutions, we can find relaxations of the model posed in (1). In 
particular, LASSO [16] or Basis Pursuit [17] showcase the 
success of –norm–based regularizers (or constraints) in 
linear problems. However, all of these solutions (either greedy 
or relaxations), rely on MSE to find the sparse codes and, hence, 
are prone to biased estimations in the presence of outliers or 
non–homogenous noise. 

B. K-SVD as a solution to the Sparse Modeling problem 
Sparse modeling usually refers to the problem of estimating 

the model parameters given an ensemble of training samples; 
one instance of such problem is dictionary learning. In 
particular, the goal is to estimate both sparse codes and 
dictionary atoms in a data–driven scheme, i.e.: 

   (4) 

where  is the sparse code corresponding to the sample  

and  denotes the Frobenius norm. The performance 

surface of (4) is non–convex; also, optimizing the linear 
problem under the  pseudonorm is combinatorial in nature 
and impractical in most cases. Therefore, greedy techniques are 
adopted instead. Namely, K-SVD [7] generalizes the well 
known clustering algorithm k-means to the sparse modeling 
framework. K-SVD alternates between sparse coding and 

dictionary update stages. The former admits any off–the–shelf 
sparse approximators, e.g. OMP, whereas the latter estimates 
the dictionary atoms in a sequential fashion. 
 The dictionary update stage starts by assuming that both X 
and K – 1 columns of D are fixed. Then, the atom in question, 

, and its support, , i.e. the k-th row of X, are jointly 
updated via: 

  (5) 

where  is the error when the contribution from the k-th atom 

is removed. Lastly, both  and  are estimated via Singular 

Value Decomposition (SVD) of a restricted version of in 
order to preserve the sparseness of the solution, i.e. only the 
columns of that are currently active for  are part of the 
optimization of such atom. K-SVD then proceeds to update 
each dictionary atom sequentially to finish one single dictionary 
update round. The overall algorithm usually runs for a fixed 
number of alternating optimizations (sparse coding and 
dictionary update) or until a convergence criterion is met. 

III. M-ESTIMATORS–BASED K-SVD 

A. M-Estimators 

Let  be the active atoms in the dictionary D at OMP 

iteration k, and  be the vector that solves the following 
regression problem: 
   (6) 
where e is an error vector with i.i.d. components drawn from a 
zero–mean Normal density. The least squares solution is the 
maximum likelihood estimator for  under the condition of 
Gaussian errors. After maximizing the corresponding cost 
function, the well known normal equations give rise to the OLS 
estimator, 

   (7) 

which is optimal only for Gaussian errors scenarios. If such 
assumption is no longer valid—e.g. due to outliers or non–
Gaussian environments—M-Estimators are a suitable 
alternative to solve (6). 

In particular, M-Estimators exploit a different function to 
model the statistical properties of the errors: 

   (8) 

where  is a continuous, symmetric function (also known as 
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the objective function) with a global minimum when the 
argument is equal to zero [8]. Clearly, the objective function 
reduces to half the sum of squared errors for the Gaussian case, 
which confirms the equivalence of the MSE criterion and the 
OLS estimator under the umbrella of maximum likelihood 
estimation. s is an estimate of the scale of the errors; it is 
required in order to avoid biased solutions due to scale 
differences. Non–robust estimates of the scale—such as the 
standard deviation—cannot be utilized; thus, the “re–scaled 
MAD” is the usual choice: 
   (9) 
where MAD (median absolute deviation) is highly robust 
against outliers because it relies on the median ( ) of the errors 
instead of their mean [8]: 

  (10) 

Likewise OLS, the optimal solution is obtained via partial 
differentiation of eq. (8) with respect to each of the k parameters 
in question. In particular, we define the weight function, w, as: 

   (11) 

 is known as the score function and defined as the 
derivative of . After optimizing the cost function and 
rearranging terms (more details can be found in [10]), the 
equation to solve—in matrix form—is: 

   (12) 
  W is the square diagonal matrix with non–zero elements as 

the entries of the weight function w. Lastly, if  is well–
conditioned, the robust M-Estimator is equal to: 

  (13) 

Comparing equations (7) and (13), we can notice that  
M-Estimators incorporate a weight matrix that adaptively 
assigns larger values to samples from the main mode of the 
residuals and smaller weights, i.e. lower influence, to potential 
outliers. Many objective functions (and in turn, weight 
functions) have been proposed in the literature [18]; yet, we 
focus on five different variants that were thoroughly studied and 
validated on previous work [10]—Cauchy, Fair, Huber, Tukey 
and Welsch. Table I details the functional forms of such 
estimators alongside the benchmark MSE–based estimator: 
OLS. All the robust flavors under study concentrate higher 
weights around the zero–error mark and, then, smoothly decay 
the weights in a symmetrical fashion as the error increases. 

Even though the optimal M-Estimator admits a closed form 
solution, solving for it is not as straightforward as its OLS 
counterpart. Namely,  depends on W, which in turn, 

depends on the residuals and, thus, relies on . A 

plausible solution to find both estimates is Iteratively 
Reweighted Least Squares or IRLS [8], which exploits BCD to 

achieve local solutions of (13). Algorithm 1 details the IRLS 
routine; it normally runs for a fixed number of iterations or until 
the inter–iteration error of the estimates reaches a set threshold. 
It is worth mentioning that IRLS uses the OLS solution as 
initialization to the BCD optimization. 

 
TABLE I. OBJECTIVE AND WEIGHT FUNCTIONS OF OLS AND M-ESTIMATORS. 
EACH ROBUST VARIANT COMES WITH A HYPERPARAMETER “C”. EXEMPLARY 

PLOTS UTILIZE THE OPTIMAL HYPERPARAMETERS DETAILED IN TABLE II. 
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Lastly, Table II details the M-Estimator hyperparameters, c, 
that achieve a 95% asymptotic efficiency on the standard 
Normal distribution. Throughout this work, we exploit such 
optimal values to avoid parameter tuning by the user. 
 

TABLE II. OPTIMAL M-ESTIMATOR HYPERPARAMETERS, C. 
Cauchy Fair Huber Tukey Welsch 

2.385 1.4 1.345 4.685 2.985 
 

B. MeK-SVD 
M-Estimators–based K-SVD incorporates robustness into 

the sparse coding stage of K-SVD. Specifically, instead of 
exploiting equation (7) to update the sparse code and solve (3), 
the proposed approach utilizes equation (13) alongside its IRLS 
solution procedure to estimate both the robust sparse code and 
weight vector for all the dimensions in question; this robust 
sparse inference algorithm was developed in [10] under the 
name of Robust OMP (RobOMP).  

After the robust sparse representation is estimated, the 
dictionary update stage proceeds as usual until convergence. 
The overall learning framework has the same number of 
hyperparameters as its K-SVD predecessor, i.e. a stopping 
criterion for RobOMP (either a fixed number of iterations, L, or 
a minimum reconstruction error threshold), and the number of 
dictionary atoms to be estimated: k. 

IV. RESULTS 

A. Recovery of Ground Truth Dictionaries 
The first set of results deals with estimation of dictionary 

atoms for synthetic data where the ground truth is available. The 

dictionary, , is generated by sampling a zero–mean 
uniform distribution with support [-1,1]. Each column is further 
normalized to have unit –norm. Then, the sparse 
representation coefficients are generated from a uniform 
distribution with support [0,1]. 3 codes fully represent a 
synthetic sample, i.e. . 1500 20–dimensional vectors are 
generated via linear combinations of the sparse codes and 
dictionary. Lastly, these samples are affected by non–linear, 
non–homogeneous noise in the form of missing entries, i.e. a 
percentage of components from each observation is selected at 
random and set to zero. This percentage is varied from 0 to 50%. 

We compare the performance of traditional K-SVD to its  
M-Estimators counterparts. In particular, we refer to each 
dictionary learning scheme as its underlying sparse coder, e.g. 
K-SVD is simply denoted as OMP. Each dictionary learning 
algorithm performs 40 alternating runs between sparse coding 
and dictionary update stages. All the sparse coders run for a 
total of 3 successive iterations, i.e. L = 3, and the number of 
estimated atoms is taken from the ground truth (k = 50). 

Fig. 1 summarizes the results for a total of 50 independent 
runs per noise rate/dictionary learning technique in terms of 
average inner product between the estimated atoms and the 
ground truth generating dictionary. All algorithms are able to 
learn the generating dictionary for small amounts of missing 

entries. However, as the intensity of the noise increases, OMP–
based K-SVD yields suboptimal dictionaries, whereas the 
robust alternatives consistently outperform the state of the art. 
In particular, the Tukey and Welsch variants rise above the rest 
of the MeK-SVD flavors. This provides a proof of concept of 
the robustness achieved when M-Estimators are exploited as 
part of the dictionary learning framework.  

B. Image Denoising Exploiting Redundant Representations 
The next set of results focuses on image denoising based on 

sparse and redundant representations, as proposed in [4]. 
Essentially, the denoising framework performs dictionary 
learning over local patches of the noisy image (usually 8  8 
pixels in size). First, each patch is sparsely encoded using a 
stopping criterion based on the residue norm equal to , 
where  is the standard deviation of the noise source: 
homogenous additive Gaussian noise. Then, the dictionary 
atoms are updated via successive SVD routines that solve (5). 
Lastly, the denoised image is the result of a combination of local 
averaging of overlapping patches and global averaging with the 
original, noisy example. One of the main hyperparameters of 
the framework, Lagrange multiplier , is set equal to 30 
according to the authors in [4]. 

The first set of experiments deals with salt and pepper noise 
on top of homogenous additive Gaussian noise with known 
standard deviation. For our case, we chose  and the rate 
of salt and pepper affected pixels is varied from 0 to 20%. All 
possible vectorized 8  8 patches constitute the observations, 

Y, of the model while k is set equal to 256, i.e. . The 
overcomplete Discrete Cosine Transform (DCT) basis is chosen 
as the initialization of the dictionary. Lastly as suggested by [4], 
we ran a total of 10 alternating optimizations between robust 
sparse coding and dictionary update stages.  

Table III details the grand average PSNRs over 5 
independent runs for each salt and pepper noise rate and five 
different well known 512  512 gray–scale images: Lena, 
Barbara, Boats, House, and Peppers. For proper comparison 
purposes, we ran similar denoising schemes exploiting off–the–
shelf dictionaries: the overcomplete DCT basis and a “global” 
dictionary obtained from random sampling of natural images. 
These two fixed dictionary algorithms are contrasted to the 
adaptive case, i.e. dictionary learning, for all of the robust 
variants under study and the K-SVD benchmark. 
   

 
Fig. 1. Average inner product between estimated and ground truth atoms under 
missing entries type of noise.  
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TABLE III. SUMMARY OF DENOISING PERFORMANCE, PSNR GRAND AVERAGE 
(DECIBELS), UNDER DIFFERENT RATES OF SALT AND PEPPER NOISE. EACH CELL 
REPORTS OVERCOMPLETE DCT (UPPER ROWS), GLOBAL TRAINED DICTIONARY 
(MIDDLE ROWS), AND ADAPTIVE DICTIONARY, I.E. K-SVD–BASED (BOTTOM 

ROWS). BEST RESULTS FOR EACH DICTIONARY CASE ARE MARKED BOLD. STAR 
INDICATES BEST OVERALL RESULT FOR EACH RATE CASE. 

S&P 
Rate 

Sparse coder variant 
OMP Cauchy Fair Huber Tukey Welsch 

 
0.00 

 

32.29 32.34 32.11 32.27 31.69 31.73 
32.37 32.43 32.27 32.35 32.18 32.18 
34.75* 34.25 33.61 34.10 33.67 33.61 

 
0.05 

18.51 23.23 20.77 23.83 24.30 24.28 
18.48 22.36 20.28 22.91 23.70 23.71 
18.70 21.39 19.98 23.92 24.38*  24.36 

 
0.10 

15.47 18.90 16.34 20.11 21.73 21.68 
15.45 18.19 16.28 19.25 20.73 20.71 
15.68 18.09 16.54 21.21 24.04* 24.00 

 
0.15 

13.69 15.67 14.11 16.83 19.99 19.88 
13.68 15.44 14.14 16.47 18.72 18.67 
13.84 15.58 14.50 17.17 24.01* 23.80 

 
0.20 

12.43 13.46 12.71 14.26 18.31 18.15 
12.43 13.56 12.75 14.32 17.12 17.02 
12.54 13.39 12.99 14.36 21.53* 20.76 

 
It is evident that OMP–based K-SVD degrades quickly in the 

presence of outliers, e.g. roughly a 16 dB drop from 0% to 5% 
of salt and pepper affected pixels. Conversely, robust variants 
(e.g. Tukey and Welsch) do not experience such drastic drop in 
performance. Also in general, the adaptive dictionary versions 
yield higher PSNRs than their fixed dictionary counterparts, 
which confirms the need for data–driven, adaptive solutions. 
Fig. 2 illustrates the denoising outcomes on the image “House”.  
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PSNR = 24.09 dB 
Fig. 2. Example of the denoising results for the image “House”. 10% of pixels 
are affected by salt and pepper noise. Adaptive dictionary cases. 
 

Next, we investigate the effect of impulsive noise, i.e.  
high–power noise at low rates, on the denoising schemes. We 
still operate under initial additive homogenous Gaussian noise 
with . Then, we mimic a non–linear transformation by 
adding high–variance Gaussian noise to a low percentage of 
pixels. Due to the restricted dynamic range of the inputs, adding 
impulsive noise will result in some pixels to saturate to either 0 
to 255. Once again, k = 256. Table IV summarizes similar grand 
average PSNRs as Table III’s for different impulsive noise 
powers. The robust variants of K-SVD consistently outperform 
the state of the art for various impulsive noise powers at 5% of 
incidence. Moreover, Table V compliments the analysis by 
providing performance measures with respect to several rates 
for a given impulsive noise standard deviation of 50. 

 
TABLE IV. SUMMARY OF DENOISING PERFORMANCE, PSNR GRAND AVERAGE 

(DECIBELS), UNDER DIFFERENT IMPULSIVE NOISE POWERS (5%). EACH CELL 
REPORTS OVERCOMPLETE DCT (UPPER ROWS), GLOBAL TRAINED DICTIONARY 
(MIDDLE ROWS), AND ADAPTIVE DICTIONARY, I.E. K-SVD–BASED (BOTTOM 

ROWS). BEST RESULTS FOR EACH DICTIONARY CASE ARE MARKED BOLD. STAR 
INDICATES BEST OVERALL RESULT FOR EACH NOISE CASE. 

Imp.  
Noise 

 

Sparse coder variant 
OMP Cauchy Fair Huber Tukey Welsch 

 
50 

 

27.25 29.65 29.62 29.77 29.62 29.63 
27.16 29.41 29.30 29.52 29.70 29.68 
27.48 29.97 29.56 30.35* 30.15 30.13 

 
60 

26.13 28.99 28.91 29.17 29.11 29.11 
26.04 28.72 28.49 28.87 29.13 29.11 
26.16 28.74 28.28 29.30* 29.21 29.19 

 
70 

25.19 28.42 28.24 28.64 28.66* 28.66 
25.12 28.11 27.72 28.29 28.62 28.59 
25.16 27.76 27.23 28.44 28.41 28.36 

 
80 

24.41 27.90 27.61 28.17 28.24* 28.24 
24.36 27.57 27.03 27.78 28.16 28.15 
24.35 26.93 26.32 27.74 27.75 27.71 

 
TABLE V. SUMMARY OF DENOISING PERFORMANCE, PSNR GRAND AVERAGE 

(DECIBELS), UNDER DIFFERENT IMPULSIVE NOISE RATES ( ). EACH 
CELL REPORTS OVERCOMPLETE DCT (UPPER ROWS), GLOBAL TRAINED 

DICTIONARY (MIDDLE ROWS), AND ADAPTIVE DICTIONARY, K-SVD–BASED 
(BOTTOM ROWS). BEST RESULTS FOR EACH DICTIONARY CASE ARE MARKED 

BOLD. STAR INDICATES BEST OVERALL RESULT FOR EACH NOISE CASE. 
Imp.  
Noise 
Rate 

Sparse coder variant 
OMP Cauchy Fair Huber Tukey Welsch 

 
0.05 

 

27.25 29.65 29.62 29.77 29.62 29.63 
27.16 29.41 29.30 29.52 29.70 29.68 
27.48 29.97 29.56 30.35* 30.15 30.13 

 
0.10 

24.67 27.60 27.65 28.03 28.22 28.22 
24.66 27.36 27.28 27.77 28.17 28.14 
25.04 28.19 27.71 29.07 29.12* 29.08 

 
0.15 

23.01 25.76 25.81 26.54 27.09 27.07 
22.99 25.58 25.49 26.34 26.97 26.94 
23.69 27.09 26.25 28.38 28.58* 28.54 

 
0.20 

21.78 24.08 24.12 25.12 26.08 26.03 
21.76 24.00 23.90 25.05 25.96 25.91 
22.48 25.99 25.18 27.85 28.25* 28.20 

 
0.25 

20.82 22.63 22.68 23.76 25.11 25.02 
20.81 22.67 22.57 23.86 25.04 24.97 
21.43 24.49 24.30 26.80 28.05* 28.02 

 

σ = 10

σ

σ = 50



 

 
a) Rate = 0 % 

 
b) Rate = 10 % 

 
c) Rate = 20 % 

Fig. 3. Relation between denoising performance (PSNR) and sparseness of 
dictionary learning solutions. Salt and pepper noise. Adaptive dictionary cases.  

 

Lastly, we study the sparseness of the solutions in terms of 
average number of coefficients per sample, i.e. average  
pseudonorm of the support set of the sparse codes per 8  8 
patch. We use the salt and pepper noise scenario to illustrate the 
relation between denoising performance (PSNR) and 
sparseness of the representation. Fig. 3 summarizes the results 
for three noise rate cases. The results suggest that, in the 
presence of outliers, OMP–based K-SVD not only 
underperforms in terms of denoising, but it also overrepresents 
the inputs, which essentially defeats the purpose of a sparse 
modeling framework. On the other hand, the MeK-SVD flavors 
still encourage sparse solutions (specially Tukey and Welsch) 
while, at the same time, yield improved outcomes. 
Consequently, M-Estimator–based dictionary learning 
techniques might be suitable for image compression and 
denoising under challenging scenarios. This hypothesis will be 
explored as further work. 

V. CONCLUSION 
We proposed a robust alternative to the well known 

dictionary learning technique, K-SVD. RobOMP [10] exploits 
M-Estimators to obtain robust sparse codes and improve not 
only performance, in terms of estimation bias, but also the 
overall sparseness of the solutions. Empirically, we found that 
the Tukey and Welsch variants stand out from the rest. Yet, 
more detailed analysis is needed in order to assess which weight 
function (and associated hyperparameter) is indeed the most 
robust. Further work might involve incorporating robustness 
into the remaining stage of K-SVD—dictionary update—by 
means of robust SVD algorithms, such as the one outlined in 
[19]. 
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