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Abstract. A novel criterion to the well-known dictionary learning tech-
nique, K-SVD, is proposed. The approach exploits the L1-norm as the
cost function for the dictionary update stage of K-SVD in order to pro-
vide robustness against impulsive noise and outlier input samples. The
optimization algorithm successfully retrieves the first principal compo-
nent of the input samples via greedy search methods and a parameter-
free implementation. The final product is Robust K-SVD, a fast, reli-
able and intuitive algorithm. The results thoroughly detail how, under
a wide range of noisy scenarios, the proposed technique outperforms K-
SVD in terms of dictionary estimation and processing time. Recovery
of Discrete Cosine Transform (DCT) bases and estimation of intrinsic
dictionaries from noisy grayscale patches highlight the enhanced perfor-
mance of Robust K-SVD and illustrate the circumvention of a misplaced
assumption in sparse modeling problems: the availability of untampered,
noiseless, and outlier-free input samples for training.
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1 Introduction

Sparse modeling constitutes an advantageous framework for applications where
sparsity and parsimonious representations are favored, e.g. data compression,
image processing and high-dimensional statistics are some of the fields that ex-
ploit its inherent concepts. The modeling itself is usually compartmentalized
into two very distinctive stages: sparse coding and dictionary learning; while the
former strives to represent the input signal as a combination (usually linear) of
a few elements, known as bases or atoms (e.g. the JPEG compression standard),
the latter learns the set of such overcomplete generating atoms, i.e. a dictionary,
in a data-driven scheme.

The sparse coding problem is usually solved by either exploiting a surrogate
of the L0-pseudonorm that characterizes sparse decompositions, e.g. L1-norm-
based convex optimization programs, such as Basis Pursuit [4], or a greedy
approach that usually yields a suboptimal, but rather more tractable, solution:
Matching Pursuit (MP) or any of its variants [13, 15]. The dictionary learning
estimation is generally solved via probabilistic approaches [11] or generalized
clustering [7, 1]. K-SVD, one of the clustering-based methods, is arguably the
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most widely utilized and recognized dictionary learning algorithm in the lit-
erature [6, 12, 3]. Its core optimization can be summarized as an alternation
between sparse coding and dictionary update stages.

However, K-SVD implicitly relies on second-order statistics via the Singu-
lar Value Decomposition (SVD) or Principal Component Analysis (PCA) alter-
nating update stage. This approach, although principled and practical, might
yield erroneous estimations under the presence of additive non-Gaussian noise,
e.g. impulsive noise. In addition, outlier samples can easily bias the dictionaries
due to the equal weight policy of the Minimum Squared Error (MSE) criterion.
A well-known alternative against outliers is to substitute MSE fidelity terms
by L1-norms of the estimation errors. Therefore, the main contribution of this
manuscript is to incorporate robustness into the dictionary learning framework
by exploiting the L1-norm as the optimization criterion in the SVD update stage
of K-SVD.

In practical terms, unlike regular SVD, L1-norm-based PCA does not have a
closed form solution and numerical methods are usually required. Ding et al. pro-
posed R1-PCA in a successful attempt to obtain robust principal components,
however, the method is highly dependent on the dimension m of a surrogate
subspace [5]. On the other hand, in [2, 9], the authors exploit a probabilistic
approach with Laplacian priors to perform a L1-norm-based decomposition; nev-
ertheless, they are both limited in practice due to reliance on particular heuris-
tics or use of linear and quadratic programs, respectively. In terms of sparse
modeling, Mukherjee et al. developed a L1-based K-SVD variant by solving a
reweighted L2-norm problem; yet, the comparison to baseline K-SVD might be
biased due to the disparity in sparse coding algorithms, i.e. iteratively reweighted
least squares (IRLS) for the proposed method and Orthogonal Matching Pur-
suit (OMP) for K-SVD [14]. In the present work, the fact that K-SVD needs to
only estimate the first principal component (for each atom) is exploited by using
the algorithm proposed by Kwak [10]; this technique provides a fast, e�cient
and reliable methodology to estimate the eigenvector with largest L1 dispersion
(in feature space). In this way, the proposed final dictionary learning technique,
known as Robust K-SVD, is able to estimate overcomplete patterns in a robust
and fast scheme that empirically seems to even alleviate the computational bur-
dens that the state of the art entails.

The rest of the paper is organized as follows: Section 2 introduces the concept
of robustness to the K-SVD formulation and details the necessary conditions,
optimization criteria and algorithms. Section 3 focuses on two types of exper-
iments alongside their results and discussion. Lastly, Section 4 concludes the
paper.

2 Robust K-SVD

Let X = [x1, . . . ,xn] 2 IRd⇥n be the collection of n zero-mean d-dimensional
vectors. L2-norm-based PCA attempts to find an m-dimensional linear subspace
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(m < d), such that the variance is maximized (or the MSE is minimized); this
task is accomplished by solving (1):

J2(W,V ) = ||X �WV ||22 (1)

where W 2 IRd⇥m is a projection matrix with columns {wk}mk=1 known
as bases of the m-dimensional subspace, i.e. feature space. V 2 IRm⇥n is the
corresponding coe�cient matrix, and || · ||2 denotes the L2-norm operator. The
global minimum of (1) is achieved via SVD which also corresponds to the solution
of the dual problem:

W ⇤ = argmax
W

||WTSxW ||2 = argmax
W

||WTX||2 (2)

subject to WTW = Im

where Sx is the covariance matrix of X and Im is the m⇥m identity matrix.
Usually, the solution of (2) is proper and tractable. Nevertheless, it is well-known
that the squared L2-norm is sensitive to outliers; thus, it is necessary to appeal
to L1-norm-based optimization to mitigate such e↵ect.

2.1 SVD Based on L1-norm Maximization

Instead of minimizing the squared L2-norm of the error, the following criterion
is adopted:

J1(W,V ) = ||X �WV ||1 (3)

where || · ||1 denotes the L1-norm operator. In [10] it was noted that optimiz-
ing (3) is rather di�cult; thus, it is posited that instead of minimizing J1 in the
original d-dimensional input space, it would be more advantageous to maximize
the L1 dispersion in the feature space as follows:

W ⇤ = argmax
W

||WTX||1 (4)

subject to WTW = Im

To obtain a local minimizer, [10] proposes a greedy method where, form = 1,
Equation (4) becomes:

w
⇤ = argmax

w
||wTX||1 = argmax

w

nX

i=1

|wT
xi| (5)

subject to ||w||2 = 1

For the remaining m � 1 principal components, another greedy search is
proposed, however, it is not addressed here. Algorithm 1 guarantees finding
a local minimizer of (5) by leveraging the fact that

Pn
i=1 |wT (t)xi| is a non-

decreasing function of t (for further details, refer to [10]). In practice, a stopping
threshold that tracks the norm of successive estimations is utilized.
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Algorithm 1 PCA-L1 [10].

Input: X = [x1, . . . ,xn] 2 IRd⇥n

Output: w 2 IRd

w(0) w(0)/||w(0)|| t 0
repeat

for i = 1, . . . , n do

if w
T (t)xi < 0 then

pi(t) = �1
else

pi(t) = 1
end if

end for

t t+ 1
w(t) =

Pn
i=1 pi(t� 1)xi

w(t) w(t)/||w(t)||2
until convergence

2.2 Robust L1-norm-based Dictionary Learning

K-SVD was proposed by Aharon et al. as a generalization of K-means [1]. Given
a set of observations Y = {yi}Ni=1, (yi 2 IRn), the estimation objective is to find
a set of overcomplete patterns, atoms, or bases, i.e. a dictionary D 2 IRn⇥K ,
that is able to sparsely encode the inputs (in a linear fashion):

min
D,X

{||Y �DX||22} subject to 8i, ||xi||0  T0 (6)

where T0 denotes the number of non-zero entries in the sparse representation
vector xi, i.e. i-th column of X. Likewise K-means, K-SVD alternates between
input assignment and centroids update stages. The former utilizes any of the
standard sparse coding algorithms, e.g. MP, OMP, while the latter updates the
dictionary atoms via SVD operations. The update stage assumes that both X
and k � 1 columns of D are fixed, then, the atom in question, dk, alongside its
support in X, i.e. xk

T (k-th row in X) are jointly updated as follows:

||Y �DX||22 =

������

������
Y �

KX

j=1

djx
j
T

������

������

2

2

=

������

������
(Y �

X

j 6=k

djx
j
T )� dkx

k
T

������

������

2

2

= ||Ek�dkx
k
T ||22

(7)
where Ek is the error when the k-th atom is removed. In order to preserve

the sparsity of the solution, it is necessary to restrict the support of Ek to the
columns that are currently using the atom dk; this shrinking operation results
in ER

k which is the matrix to be linearly decomposed via SVD. The resulting
updated atom is the first eigenvector (sorted by largest variance). In order to
guarantee robustness against impulsive noise and outliers, the MSE criterion is
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Algorithm 2 Robust K-SVD

Input: Y 2 IRn⇥N , D 2 IRn⇥K , T0

Output: D 2 IRn⇥K

repeat

Sparse Coding Stage (standard algorithms can be utilized, e.g. MP, OMP):
X  SpCod(Y,D, T0)
Dictionary Update Stage:
for k = 1, 2 . . .K do

wk  {i|1  i  N,xk
T (i) 6= 0}

Ek  Y �
P

j 6=k djx
j
T

⌦k 2 IRN⇥|wk| s.t. ⌦k(wk(i), i) = 1
ER

k  Ek⌦k

dk  PCA-L1(ER
k )

end for

until convergence

replaced by the L1-norm-based PCA algorithm described in the previous sub-
section [10]. The final result, Robust K-SVD, is summarized in Algorithm 2. In
practice, the algorithm stops after either surpassing a threshold in successive es-
timations or reaching a fixed number of iterations. One of the main advantages
of the proposed approach is that K-SVD, by only exploiting the first eigenvector,
does not require the remaining m � 1 bases, which is exactly what Algorithm
1 provides in a fast and e�cient implementation. This suggests a clear leverage
over other techniques that require the full estimation of the bases.

3 Results and Discussion

3.1 Recovery of Orthogonal Bases

The first set of experiments focuses on linear combinations of 16-dimensional
DCT bases. Specifically, the atoms are linearly combined (T0 = 4) in a random
fashion using coe�cients from a uniform distribution between -1 and 1. Out
of the 5000 generated samples, impulsive noise is added to 10% of them (SNR
from -30 dB to -15 dB). Then, both K-SVD and Robust K-SVD estimate the
dictionary with the following model parameters: K = 16, T0 = 4, 10�3 as con-
vergence criterion for PCA-L1, 20 alternate iterations between sparse coding and
dictionary update stages, and 25 di↵erent trials for each noise scenario. Figure 1
displays the average normalized cross-correlation coe�cient for all the noise cases
and combinations between sparse coding mechanisms and dictionary update ap-
proaches. It is clear that Robust K-SVD outperforms K-SVD and provides a
principled scheme to deal with impulsive noise.

The second scenario fixes the impulsive noise SNR to -20 dB and varies
the impulsive noise rate. Again, Figure 1 confirms that Robust K-SVD is less
sensitive to outlier-like, contaminated samples. It is worth mentioning that these
comparisons are not biased by the choice of sparse coding mechanisms, i.e. both
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MP and OMP are used for both dictionary learning techniques; thus, it is explicit
that the improved performance is solely due to the Robust K-SVD algorithm.
Also for this case, there is marginal di↵erences between MP and OMP because
the original generating dictionary is orthogonal, i.e. MP reduces to OMP.
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Fig. 1: Recovery of DCT bases. Average normalized cross-correlation between
original and estimated dictionaries under impulsive noise. Left: Variable SNR,
noise rate of 0.1. Right: Variable rates, noise SNR = -20 dB.

3.2 Dictionary Learning on Grayscale Image Patches

The second set of experiments utilizes the Yale Face Database [8] to extract
10000 random 8⇥8 grayscale patches in order to estimate an intrinsic generating
dictionary. For this case, outlier samples were simulated by blocks of salt and
pepper noise, i.e. blocks with black and white pixels. The size of the outlier blocks
was varied from 1 ⇥ 1 (only one pixel is a↵ected in the sample) until 8 ⇥ 8 (all
pixels in the sample are distorted). The number of outlier samples are modified
as well for rate values between 0 (no noise), until 0.25 (25% of the samples are
perturbed by noise). In addition, each 8⇥ 8 grayscale patch is vectorized into a
64-dimensional zero-mean sample. Lastly, out of the 10000 available blocks, 80%
go under the salt and pepper noise treatment, while the remaining clean 20%
are reserved for testing and model quantification.

Both K-SVD and Robust K-SVD begin the estimation process with the same
initial seed dictionary and utilize the same sparse coding algorithm (OMP).
Values of K = 400 and T0 = 10 are set. A total of 20 trials per noise scenario are
simulated. Lastly, 30 sequential sparse coding and dictionary update stages are
ran for each case. The normalized L2-norm of the reconstruction error on the test
set is chosen as the metric of success. Figure 2 illustrates the e↵ect of outliers
in the dictionary learning process for the 1 ⇥ 1 and 8 ⇥ 8 noisy blocks cases:
K-SVD is clearly more biased than Robust K-SVD when outliers are present.
The size of the outlier block has a clear e↵ect on the estimation as well. Lastly,
it is remarkable how Robust K-SVD outperforms the baseline even for the 0
rate case (no salt and pepper noise), i.e. the proposed method is even able to
discard the e↵ect of potential outliers inherent to real-world signals. This clearly
suggests that Robust K-SVD is a suitable alternative to K-SVD even when no
impulsive noise is explicitly present.
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Fig. 2: Estimation of intrinsic dictionary for grayscale image patches. Average
L2-norm of reconstruction error (normalized by L2-norm of input) as function
of sizes of salt and pepper noisy blocks and rates.

Table 1 summarizes the results for the rest of the noisy block sizes and a
particular outlier rate. Again, Robust K-SVD outperforms the corresponding
baseline case and shows a natural degradation as the outlier samples grow in
influence. It is worth mentioning that Robust K-SVD consistently showcased
a faster processing time that regular K-SVD; e.g. in the 8 ⇥ 8 case, K-SVD
needed an average of 1.58 seconds in the dictionary update stage (svds MATLAB
routine) while Robust K-SVD spent 0.59 seconds in the same task (iMac 2.7 GHz
Intel Core i5, 8 GB memory). This empirically suggests that Robust K-SVD is
not only superior in performance, but also less computationally demanding than
the state of the art. In the spirit of openness, the MATLAB code of the proposed
algorithm can be found in https://github.com/carlosloza/Robust_KSVD.

Table 1: Average L2-norm of reconstruction error as function of sizes of salt and
pepper noisy blocks (0.1 rate case).

Noisy Block Size 1⇥ 1 2⇥ 2 3⇥ 3 4⇥ 4 5⇥ 5 6⇥ 6 7⇥ 7 8⇥ 8

K-SVD 0.178 0.183 0.189 0.199 0.209 0.220 0.229 0.234
Robust K-SVD 0.168 0.169 0.171 0.175 0.182 0.190 0.195 0.197

4 Conclusion

Robust K-SVD is able to incorporate robustness into the sparse modeling frame-
work by substituting MSE-based SVD operations with robust and fast estima-
tion of principal components via L1-norm optimization. The results not only
illustrate the expected safeguard against impulsive noise and outliers, but they
also indicate that Robust K-SVD is suitable for problems framed as noiseless. In
addition, we empirically prove that Robust K-SVD is faster and computation-
ally less demanding than K-SVD. This opens the possibility of exploiting the
proposed algorithm in high-dimensional scenarios where SVD computations are
clearly prohibitive.
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