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Abstract— We introduce a novel technique to analyze non-
stationarity in single-channel Electroencephalogram (EEG)
traces: the Embedding Transform. The approach is based on
Walter J. Freeman’s studies concerning active and rest stages
and deviations from Gaussianity. Specifically, we generalize his
idea in order to include cases where the neuromodulations are
sparse in time. Specifically, the transform maps the temporal
sequences to a set of /?-norms where modulated patters are
emphasized. In this way, the background, chaotic activity can be
modeled as the main lobe of the distribution, while the relevant
synchronizations (or desynchronizations) fall on the right (or
left) tail of the density of such norms. We test the algorithm on
two different datasets: alpha bursts on synthetic data simulated
in the BESA software and low-gamma oscillations in the motor
cortex from the Brain-Computer Interface (BCI) Competition 4
Dataset 4. The results are promising and place the Embedding
Transform as a quick, single-parameter tool to effectively assess
which channels (or regions) are actively engaged in particular
behaviors and which are in a more silent type of stage.

Index Terms—EEG, Embedding, Gaussianity,
Stationarity,

Non-

I. INTRODUCTION

Extracellular electrical potentials from the brain such as
Electroencephalogram (EEG), Electrocorticogram (ECoG),
and Local Field Potentials (LFP) share the common prop-
erty of spatio-temporal synchronization epochs expressed as
neuromodulations or phasic events over time [1]. These well-
defined temporal signatures constitute the collective effort
of neuronal assemblies in order to process external stimuli
and/or regulate internal physiological phenomena. Proper
and systematic analysis of such events is reflected on the
myriad of Neuroengineering studies where novel properties
and network dynamics from the brain are uncovered time
after time, e.g. sleep stages [2], epilepsy studies [3], Brain-
Machine Interfaces [4], topographical and functional map-
ping [5], the physiology of movement disorders [6], and
memory encoding [7] to name a few.

Most of these studies are, sometimes inadvertently, an-
chored on the key concept of perpetual transitions in the
brain: from highly complex unpredictable chaos to robust,
transiently predictable (and oscillatory) stages. In dynam-
ical systems jargon, this transitional state is known as
criticality—a type of stability where the network reorganizes
its dynamics to and fro due to external and/or internal
perturbations [8]. This is translated as non-stationarity in the
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temporal traces of the EEG, e.g. the network dynamics (neu-
romodulations for instance) vary significantly from rest to
active stages, or even within a single active setting. The chal-
lenge is to properly exploit statistical and Machine Learning
techniques in an environment where non-stationarity is the
norm in order to provide quantifiable conclusions.

The simplest solution involves strict experimental control,
e.g. 2-class supervised classification problems with fixed and
controlled epoch duration [9]. Another alternative involves
subspace analysis [10], which might be effective; however,
further interpretation becomes unclear due to the inher-
ent mixing of the sources. Lastly, temporal segmentation
is favored from a Neurophysiological point of view, i.e.
the signal can be regarded as quasi-stationary during the
temporal window under analysis; nevertheless, the optimal
segmentation interval is still subject to debate [11] and,
hence, is an application-dependent parameter [12], [2].

Our proposed solution goes along the lines of previous
studies that focused on stationarity as well as on the specifics
regarding EEG dynamics [13], [14], [15]. Walter J. Freeman
was a pioneer in the Neurophysiology and Computational
Neuroscience fields; in particular, he posited the theory of
linking statistical concepts to behavioral stages via higher-
order moments and deviations from Gaussianity [16]. We
base our work on such ideas and generalize them in order
to characterize relevant neuromodulations and background
activity in a different domain where time is explicitly taken
into account. The result is the so-called Embedding Trans-
form; this novel technique allows to map bandpassed EEG
traces to a set of /2-norms where it is possible to determine
which recordings are actively engaged and which ones are
in a silent, background type of stage. We test the proposed
algorithm on synthetic data and BCI traces with promising
results that place the Embedding Transform as a quick,
intuitive, single-parameter tool to isolate relevant areas, chan-
nels, and traces in order to improve further processing and
interpretation. The rest of the paper is organized as follows:
Section 2 introduces the Embedding Transform alongside
its main properties and implementation. Section 3 describes
the experimental results, and lastly, Section 4 concludes the
paper and discusses further work.

II. THE EMBEDDING TRANSFORM

Freeman [16] showed experimentally that the probability
density function (pdf) of the ECoG traces from the cat’s
olfactory bulb changes according to the animal’s behav-
ioral stage. For rest periods, the ECoG amplitudes would
resemble a Gaussian distribution, while for active stages,



the densities would deviate from Gaussianity according to
estimated higher-order moments, such as kurtosis. The result
is a model that links stationarity in the time domain to
Gaussianity of the amplitudes. With this idea in mind, we
generalize Freeman’s hypothesis in order to emphasize the
neuromodulations which are normally the main scope of
quantitative analysis.

Let y[n] be a single-channel, bandpassed EEG trace
corresponding to a particular behavioral state under study.
We introduce a novel transformation that explicitly models
the temporal neuromodulations by means of embedding the
sequence in a M-dimensional space with constraints that
emphasize modulated patterns. Specifically, {S8ar(9[n])x }x
is a set of /?-norms from the M -sample long snippets (M-
snippets) extracted from y[n]:

{Bm (yn])ihe =lylme — M/2 : me + M/2]||2
st. wmell, k=1,... [0

where II is the set of middle-point indices corresponding
to all the potential non-overlapping M-snippets in y[n].
Moreover, instead of being a mere ¢2-norm mapping in
a M-dimensional embedding, {8 (y[n])x}x, or simply
Bar(y[n]), is built in a sequential manner: it starts with
the M -snippets that display clear modulatory, spindle-shaped
patterns and, then, continues with the remaining M -snippets
from y[n]. In this way, the relevant temporal information
(embedded in the neuromodulations) is not only preserved,
but emphasized by means of the priority given to such
patterns. The process can be extended to multi-trial, single
channel, bandpassed EEG recordings corresponding to the
phenomenon under consideration. Algorithm 1 details the
implementation for the Embedding Transform in the case of
N;-sample long P trials.

The functions envelope, smooth, and peaks compute the
Hilbert Transform magnitude of the temporal sequence,
smooth it (M /2-span moving average), and estimate its rele-
vant peaks, respectively. The function findMsnippets searches
for potential whole M -snippets remaining in the residue. The
algorithm terminates when all possible M -snippets have been
retrieved. The result is a set of £2-norms where the relevant
neuromodulations are extracted first and well-isolated from
the unmodulated, chaotic, background type of activity.

Some of the properties of the Embedding Transform
include non-negativity, lower and upper bounds on its cardi-
nality, and, for completeness, special cases for specific values
of its main parameter, M:

)
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where equation 2 depicts the special case where Algorithm
1 would not find relevant peaks in the smoothed Hilbert
Transform magnitude; thus, the Embedding Transform de-
faults to the EEG /¢!-norm. For [:(y[n]), the mapping
simply downsamples (by 2) the sequence |y[n]|. Additionally,
when N = M, i.e. the only M -snippet is the entire EEG

Algorithm 1 Embedding Transform.
Input: {y;[n]}2,, M
Output: {B (y[n])x }x
k+1
fori=1,...,P do
ri[n] < Inx1
y;[n] = envelope(y;[n])
si[n] = smooth(y.[n], M)
(G}, = peaks(si[n], M)
for j=1,...,pdo
Bu )k < |lysl¢; — M/2: ¢ + M/2][|
ri[CG — M /21 + M/2] = Omxa
kE+—k+1
end for
CONTINUE = TRUE
while CONTINUE == TRUE do
¢ + findMsnippets(r;[n], M)
if ¢ # () then
Bar (ylnl)r < llwilC — M/2 s  + M/2)l]a
rilC = M/2: 4+ M/2] = Onxa
k+—k+1
else
CONTINUE = FALSE
end if
end while
end for

sequence itself, by applying equation 1, the result is the
biased estimator of the standard deviation of y[n], o,,.

The rationale behind the Embedding Transform comes
mainly from one of its key properties: if the amplitudes of
the bandpassed trace y[n| conform to a zero-mean Gaus-
sian distribution, then SB/(y[n]) can be modeled as a chi
distribution with M degrees of freedom. Furthermore, for
large M (usually satisfied with high sampling rates), the chi
distribution reduces to a Gaussian one by the Central Limit
Theorem [17]. Hence, Freeman’s hypothesis is preserved
for bandpassed background activity without neuromodula-
tions. On the other hand, if y[n] does not conform to the
Gaussianity assumption, the distribution of Sas(y[n]) will
be modified accordingly, e.g. if the network is driven by
excitatory, synchronization-type of inputs, the resulting pdf
will be right-tailed (positive skewness); on the contrary, if the
active network is of the inhibitory, desynchronization-type,
then the pdf will be left-tailed (negative skewness).

Strictly speaking, the Embedding Transform has two main
hyperparameters: the bandpass filter coefficients and the
length of the potential M -snippets (M in samples). The first
one can be designed depending on the rhythm under study,
while the second one should be selected according to Neuro-
physiological principles, previous studies, visual inspection
by experts, or quantitative tools, e.g. Time-Frequency (TF)
Transform. When properly estimated, the M parameter will
derive in a mapping that compromises between strict time-
based analysis which disregards modulated power in the EEG



(M = 1) and power-based techniques that ignore the inherent
temporal variation of averaged neuronal potentials (M = N).

III. EXPERIMENTAL RESULTS

The proposed hypothesis was tested utilizing a set of
synthetic EEG from a software package and a BCI Compe-
tition ECoG dataset. We mainly focused on the Embedding
Transform as an exploratory tool that can potentially isolate
relevant “active” electrodes via analysis of the higher-order
moments of the resulting Sy (y[n]) pdf. It is worth noting
that the Embedding Transform was briefly introduced in [18]
and later implemented as part of the noise model in a Marked
Point Process framework for the EEG [19]; however, this is
the first contribution where the main focus is the Embedding
Transform and its potential as a stand-alone technique to
analyze the stationarity in extracellular electrical potentials.

A. Synthetic Data

The set of single-channel, multi-trial traces was simulated
using the BESA software [20]. In particular, we focused on
a single source (Cz) according to the EEG 10-20 system
and a default spherical head model that takes into account
propagation delays and amplitude attenuations. The duration
of the alpha neuromodulations was set to 1 second (sampling
frequency of 100 Hz) with a maximum peak-to-peak ampli-
tude of 5 uV. The trial duration was set in an interval from 30
to 45 s. The number of phasic events was controlled in order
to simulate diverse scenarios, while the mean interval and
interval variation between adjacent neuromodulations were
varied as well to emulate real conditions. Lastly, correlated
pink noise was added to the traces with different RMS levels.

For this case, the M parameter is well known from the
ground truth, i.e. M = 100. The alpha band (8 - 12
Hz) was isolated from the simulated EEG using a Sth-
order Butterworth filter with quality factor Q = 1. Fig. 1
illustrates the pdf of the Embedding Transform for phasic
event rates from 0 to 0.118 and a RMS level of 1.5uV.
The case of 0 neuromodulations (background noise only),
corresponds to the electrode Fpl under the assumption of
a single source at Cz, i.e. the spatial attenuation derives in
traces where no neuromodulations can be distinguished from
the noise activity. It is evident that, as the phasic events
become more prevalent, the distribution starts to shift from
a Gaussian-like shape to a right-skewed density and, finally,
to a nearly bimodal pdf. In general, the unmodulated activity
(background) is modeled as the main lobe of the distribution,
while on the other hand, the relevant modulated M -snippets
are mapped to the right tail of the density. This confirms our
hypothesis regarding rest and active stages; specifically, the
neuromodulation rate dictates the shape of the distribution.

To quantify such change, the skewness of the S8y (y[n])
pdf is estimated for each noise and neuromodulation sce-
nario. The results are summarized in Table I. As expected,
the skewness for the 0 neuromodulation rate cases is very
close to zero, i.e. resembling a Gaussian distribution. Then,
there is a non-linear type of behavior when phasic events
start to appear (high skewness); this is followed by decreases
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Fig. 1. Probability density function of the Embedding Transform for simu-
lated synthetic data using the BESA software for different neuromodulation
rates (A: 0, B: 0.038, C: 0.061, D: 0.118 phasic events per second). Alpha
band. Insets show bandpassed sample traces for each case.

TABLE I
SKEWNESS OF THE EMBEDDING TRANSFORM DISTRIBUTION FOR
DIFFERENT SIMULATED CASES. BESA-GENERATED SYNTHETIC EEG.

RMS (uV) | Rate (Neuromodulations per second)
0 0.038 | 0.061 0.118
1.0 0.116 | 2.822 | 2.445 1.794
1.5 0.164 | 1.951 | 1.852 1.312
2.0 0.247 | 1.052 | 0.992 1.045

in the skewness which seem to be heavily dependent on
the noise level. In the limit, the estimated skewness should
decrease to a value close to zero when the phasic events
completely outnumber the unmodulated M -snippets; also in
this case, the overall pdf mean would shift from the noise
power (rate equal to 0) to the power of traces with full, dense
neuromodulation patterns (rate equal to 1).

B. BCI Competition Data

The second set of results utilizes the BCI Competition
IV Dataset 4 [21]. The main goal of the competition was
to infer the flexion of individual fingers from multi-channel
ECoG traces recorded subdurally from the motor cortex
(contralateral to the hand under study). In addition, a data
glove recorded the cued finger flexions. The subjects were
asked to move a particular finger depending on the visual
cue (2-second long). After each cue, a 2-second long rest
period followed, and, during each finger flexion task, the
subjects typically performed 3—5 consecutive movements or
taps. Therefore, timestamps of visual stimulus presentation,
finger flexion kinematics, and digitized (sampling frequency
1000 Hz), bandpassed (0.15-200 Hz) ECoG traces were
provided from a total of 3 subjects. For our analysis, the
ECoG recordings were downsampled to 500 Hz.

We focused on the low-gamma band (76—100 Hz, 11-th
order Butterworth filter, () = 2) due to previous studies that
link such rhythm to relevant amplitude and rate encoding
mechanisms [21], [19]. M was estimated via visual inspec-
tion and TF analysis equal to 50 samples, i.e. 100 ms. After
careful examination of the kinematics, we isolated the 2-
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Fig. 2. Example of Embedding Transform distributions for Subject 3, finger
4 (BCI Competition IV Dataset 4). Low-y band. 64 channels total. Inset
shows the histogram of the estimated skewness for all 64 electrodes.
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Fig. 3. Skewness of the Embedding Transform for all channels, finger
tasks, and subjects of BCI Competition IV Dataset 4. Low-y band (Color
palette was truncated at the 95 percentile of skewness values per subject)

second excerpts where active finger flexion was observed;
these constitute the trials in our framework. Fig. 2 depicts
the densities after performing the Embedding Transform
algorithm on a channel-by-channel scheme for a particular
Subject/finger case. It is clear that the distributions are either
symmetrical or right-skewed (see histogram inset), which
reinforces the notion that these phasic events are of the
excitatory, synchronization-driven type of patterns.
Moreover, Fig. 3 summarizes the results of all possible
scenarios by estimating the skewness of the Embedding
Transform pdf for each multi-trial, single-channel case. As
expected, the values are non-negative and relatively sparse.
This suggests that only a few channels are actively engaged
in the motor activity, while others remain at a “silent” state
where stationarity is expressed as low skewness values. This
analysis can easily isolate the channels worth of further pro-
cessing, and by doing so, reduce the computational load for
such a high sampling rate, multi-channel type of experiment.

IV. CONCLUSIONS

We have formally introduced a novel technique to analyze
the non-stationarity of bandpassed single-channel, multi-
trial EEG traces: the Embedding Transform. This single-
parameter algorithm is capable of isolating relevant actively
engaged electrodes for further processing and determining
the expected type of encoding (excitatory, synchronization-
driven or inhibitory, desynchronization-driven). We demon-
strated the potential of the proposed technique with two dif-

ferent datasets and rhythms. In the future, we expect to derive
empirical rules to estimate neuromodulation rates based on
the Embedding Transform alone. Lastly, the MATLAB code
of the proposed method is available at https://github.
com/carlosloza/Embedding_Transform.
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