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Abstract—We propose a novel framework for robust estimation
of recurring patterns in time series. Particularly, we utilize
correntropy and a shift–invariant adaptation of sparse modeling
techniques as the underpinnings of a data–driven scheme where
potential outliers, such as spikes, dropouts, high–amplitude
impulsive noise, gaps, and overlaps are managed in a principled
manner. The Maximum Correntropy Criterion (MCC) is applied
to the estimation paradigms and solved via the Half–Quadratic
(HQ) technique, which allows a fast and efficient computation
of the optimal projection vectors without adding extra free
parameters. We also posit a heuristic regarding the initial set of
functions to be estimated; specifically, we restrict the search space
to patterns with modulatory activity only. We then implement a
robust clustering routine to provide a principled initial seed for
the greedy algorithms. This heuristic is proved to alleviate the
computational burden that shift–invariant unsupervised learning
usually entails. The framework is tested on synthetic time series
built from weighted Discrete Cosine Transform (DCT) atoms
under four different variants of outliers. In addition, we present
preliminary results on winding data that illustrate the clear
advantages of the methods.

Index Terms—Correntropy, Dictionary Learning, K-SVD,
Shift–Invariant, Robust Estimation

I. INTRODUCTION

Robust estimation plays a key role in applications prone
to measurement errors, external perturbations, or outliers in
general. More specifically, in the time series domain it is
not uncommon to find instance perturbation scenarios where
outliers are usually the result of artifacts, sensor malfunc-
tioning, communication channel failures and so on. These
perturbations can easily bias any statistical estimator based on
the available samples and, thus, yield erroneous conclusions
regarding the data. An epitome of such case is the unsuper-
vised learning of patterns in time series, also known as time
series clustering.

An alternative view to the time series clustering problem is
the estimation of a generative set of functions or atoms, i.e. a
dictionary, in a data–driven scheme. This approach resembles
the dictionary learning techniques developed in the sparse
modeling community [1]–[3] with the added constraint of
shift–invariance. Yet, this extra condition makes the classic
decomposition algorithms improper when working in the time
domain: the learned patterns would be multiple shifted replicas
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of a few true generative atoms. Also, the extra computa-
tional burden of working in such a high–dimensional space
(theoretically infinite for time series) is basically impractical
in most cases. Thus, tractable dictionary learning algorithms
that harness the shift–invariance property of the generative
functions have been proposed in the literature [4], [5].

Mailhé et al. [4] extended K-SVD [1], arguably one of
the most widely utilized dictionary learning algorithm [6]–
[8], to the shift–invariant scenario. In particular, instead of
regular sparse decomposition algorithms, they proposed a fast
convolution–based technique to constraint the support of the
active atoms and, subsequently, exploited the regular K-SVD
algorithm to update the pattern in question. However, it was
never fully addressed how to choose a proper initial dictionary
for the greedy optimization. In addition as the name suggests,
K-SVD is based on iterative Singular Value Decompositions
(SVD), which implicitly optimize a second order cost function,
i.e. minimum Mean Squared Error (MSE). This approach,
although principled and with closed form solutions, is sensitive
to small perturbations in the data that can easily bias the
learned generative shift-invariant dictionary. The main contri-
bution of this manuscript is twofold: first, we circumvent the
limitations of MSE–based estimation by exploiting correntropy
[9], a similarity measure that provides robustness when used as
a cost function, and second, we propose a heuristic to choose
a suitable initial dictionary that is robust to outliers with the
added benefit of significant reduction of the computational
burden that regular random samplers usually entail.

In practice, correntropy–based optimization does not have
closed–form solutions. Therefore, we exploit the Half–
Quadratic technique [10], [11] as an efficient and suitable al-
ternative to find optimal solutions. This approach has been ex-
ploited in image processing applications and has even outper-
formed L1–norm–based algorithms [12], [13]. Consequently,
we incorporate this advantageous feature into the parsimonious
constraints inherent to sparse modeling and introduce a novel
robust framework to the time series clustering literature.

The rest of the paper is organized as follows: Section 2
details the learning algorithm for the time series case alongside
the robust nature of it. Section 3 focuses on the heuristic
developed for the seed dictionary. Section 4 describes the
experimental results on synthetic and real data, and lastly,



Section 5 concludes the paper and discusses further work.

II. ROBUST SHIFT–INVARIANT DICTIONARY LEARNING

A. The Shift–Invariant Case

In classic sparse modeling framework, the main goal is to
estimate a set of patterns or atoms that are usually overcom-
plete, i.e. a generative dictionary � 2 IRM⇥K , in a data–
driven scheme. The resulting set is able to encode or linearly
decompose the inputs Y = {yi}Ni=1, (yi 2 IRM ) in a sparse
code, X , under the following constrained cost function:

min
�,X

||Y ��X||22 subject to 8i, ||xi||0  T (1)

where T denotes the number of non–zero entries in the
sparse representation vector xi, i.e. i-th column of X .

In the shift–invariant case, the estimation is performed on
a single long time series, s, and the dictionary is the result
of shifting a set of generative patterns, D, i.e. D = {dk}Kk=1
where dk 2 IRM . This modified setting yields the following
new objective function:

min
D,c
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s.t. ||c||0  T (3)

where T⌧ is a shift operator that places a pattern d at the
time instance t = ⌧ and zeros everywhere else. In this way,
� = {T⌧dk}k,⌧ and the new goal is to estimate the generative
set, D, in an unsupervised, data–driven framework.

B. A Greedy Solution

As many sparse decomposition problems, finding the opti-
mal solution is essentially combinatorial. Hence, it is common
practice to appeal to greedy algorithms to obtain a more
tractable, albeit suboptimal, solution. Here, Matching Pursuit
(MP) [14] is the preferred technique: it basically decomposes
the input signal in a sequential manner by finding the mostly
correlated atom to the current residue. The modified version
of MP for time series invokes the cross–correlation operator
to find the sparse code alongside the temporal support of
the active atoms: �k = {⌧ |ck,⌧ 6= 0}. In addition, the
implementation of such cross–correlation–based algorithms
can be optimized exploiting Fast Fourier Transform (FFT)
heuristics. In this way, the resulting sparse decomposition
algorithm in the time domain is both tractable and principled.

Once the sparse codes and temporal supports are estimated,
it is necessary to update the current dictionary likewise K-
SVD, i.e. successively for each generative function based on
the residue, r, and decomposition parameters. For a given
atom, let ŝ = r +

P
⌧
ck,⌧T⌧d be the signal without the

contributions of the set {dk} for k 6= . Then, the optimal
update for the atom in question and its sparse code is:

(dopt

, copt


) = argmin

||d||2=1
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If � does not contain overlapping occurrences, it is possible
to exploit the unitary nature of the shift operator, T⌧ , and
utilize its adjoint, T ⇤

⌧
, for reformulating (4). The optimal

updated atom (according to MSE criterion) is the singular
vector corresponding to the largest singular value of a matrix
of patches (from ŝ) where the pattern in question is active:

d  argmax
||d||2=1

hd, T ⇤
⌧
ŝi2 (5)

This greedy solution was first proposed in [4]. However,
the optimal updated atom (and therefore the dictionary) can
be easily biased by outliers, such as spikes, dropouts, gaps,
high–amplitude impulsive noise, or even overlaps. Hence,
we incorporate robustness into the shift–invariant dictionary
learning framework by exploiting correntropy as the cost
function in the SVD decompositions.

C. MCC–based Shift–Invariant Dictionary Learning

Correntropy was introduced in [9] as a novel similarity
measure that goes beyond second–order statistics and Gaus-
sianity assumptions. Cross–correntropy, or simply correntropy,
for two random variables, X and Y , is defined as:

V�(X,Y ) = E[G�(X � Y )] (6)

where G�(·) is the Gaussian kernel with shape parameter �.
In particular, � modulates the interactions between samples,
e.g. a very large value results in L2-norm interplay, while
a very low well-tuned � mimics L0-pseudonorm type of
interactions. For this reason, the induced metric by correntropy
is able to handle outliers in a much more principled way
than the regular MSE approach which intrinsically gives equal
weights to all input samples.

As suggested in [12], the following expression exploits
correntropy as the cost function between the input samples,
{xi}Ni=1 and their corresponding projection in a lower dimen-
sional space, {vi}Ni=1 via the matrix U :

J(U) =
NX

i=1

G�(xi � Uvi) (7)

Maximizing (7) is known as the Maximum Correntropy
Criterion or MCC. Provided that U is orthonormal and sub-
stituting vi = UTxi into (7) utilizing the projection theorem,
the goal is to optimize the following cost function:

max
U

JHQ(U) =
NX

i=1

G�

⇣q
xT

i
xi � xT

i
UUTxi

⌘
(8)

One alternative to solve (8) is to exploit the Half–Quadratic
technique that was pioneered in [10] as a plausible regulariza-
tion for image denoising problems. In particular, it is necessary
to introduce an enlarged parameter space defined as:



ĴHQ(U, p) =
NX

i=1
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(9)

where p is an auxiliary variable and �(x) is a convex
conjugated function of G�(x) [11]. Particularly, for a fixed x,
the optimum value is obtained when p = �G�(x). Moreover
for a fixed U , maximizing ĴHQ(U, p) is equivalent to max-
imizing JHQ(U). Hence, the final algorithm (Algorithm 1)
alternates between optimizing for either p or U while keeping
the other parameter fixed. The result is a robust estimator of the
projection matrix (set of singular vectors) while maximizing
the correntropy between input and features spaces.

Algorithm 1 utilizes a stopping threshold, ✏, for the norm of
the difference between successive estimated singular vectors.
It is also worth mentioning that the proposed technique deals
with zero-mean input samples and it only learns the first
principal component, i.e. the projection vector corresponding
to the largest dispersion in the feature space. Also, the initial
estimation of U can be provided via regular eigendecomposi-
tion routines (EIG(·) in Algorithm 1). Lastly, we utilize the
Silverman’s rule [15] for the kernel width, �, in order to mimic
kernel annealing and avoid the need for an additional free
parameter in the framework. Algorithm 1 has been utilized
for robust principal analysis in images and non–shift–invariant
dictionary learning [8], [12], [13].

Now, MCC–based SVD can be incorporated into the greedy
solution proposed in the previous subsection in order to pro-
vide robustness against potential outliers. In particular likewise
k-means, the learning framework alternates between sparse
coding of the time series and dictionary update stages. It is the
latter stage that harnesses Algorithm 1 to estimate in a robust
and sequential manner each one of the atoms. The resulting
algorithm is referred to as MCC–based Shift–Invariant K-

Algorithm 1 MCC-SVD
Input: X 2 IRM⇥N , ✏
Output: U 2 IRM

U1  EIG(XXT , 1)
J  1
while convergence == FALSE do
r ||xi � UJ(UJ)Txi||2 i = 1, . . . , N
�  1.06⇥min {std(r), IQR(r)/1.34}⇥N�1/5

pi  �G�(
p

xT

i
xi � xT

i
(UJ)(UJ)Txi) i = 1, . . . , N

P  diag(�p)
UJ+1  EIG(XPXT , 1)
if ||UJ � UJ+1|| < ✏ then

convergence = TRUE
U  UJ+1

else
convergence = FALSE
J  J + 1

end if
end while

SVD, or MCCKSVD for short (Algorithm 2) where L is the
number of sequential decompositions for Matching Pursuit.
As previously mentioned, the Sparse Coding routine can be
efficiently computed exploiting parallel FFT–based heuristics.

In practice, either a fixed number of alternating optimiza-
tions (stages) are performed or a convergence criterion based
on successive estimated dictionaries is applied. A similar
approach has been used to estimate relevant recurring patterns
in single–channel EEG recordings [16].

Algorithm 2 MCCKSVD
Input: s,M,K,L, ✏
Output: D 2 IRM⇥K

D = InitialDictionary(s,M,K)
while convergence == FALSE do

Sparse Coding Stage (Time Series MP):
r0  s
for i = 1, . . . , L do
(ki, ⌧i) argmax(k,⌧) |hri�1, T⌧dki|
ck,⌧  [ck,⌧ , hri�1, T⌧idkii]
ri  ri�1 � hri�1, T⌧idkiiT⌧idki

end for
r  ri
Dictionary Update Stage:
for  = 1, . . . ,K do
(c, ⌧) = {(c, ⌧)|ck,⌧ = c,⌧}
for i = 1, . . . , size(c) do

E  [E, T ⇤
⌧i
r + T⌧icid]

end for
d  MCC-SVD(E, ✏)

end for
end while

III. A HEURISTIC FOR A SUITABLE INITIAL DICTIONARY

Likewise k-means, Algorithm 2 is a greedy technique; there-
fore, it usually requires multiple initializations and a criterion
to select the best subset of clusters out of all the possible
replicates. In the shift–invariant case, both requirements pose
their own particular challenges.

Multiple initializations consume computational resources by
running the same algorithm with different initial dictionary
seeds (usually chosen at random). The main problem with
this approach is the possibility of initializing the dictionary
with close replicas of a single function, i.e. by choosing
slightly shifted versions of an atom; this would clearly yield
suboptimal dictionaries. Another alternative comes from the
data mining literature in the form of clustering of time series
subsequences, i.e. isolate all the possible M–dimensional
snippets from s and exploit regular k-means to obtain the
prototypical patterns of the initial dictionary. However, as
posited by Keogh and Lin, such approach is troublesome
without proper constraints; for instance, the resulting clusters
are sinusoidal in essence and do not reflect the local structure
of the data [17]. This is a direct consequence of disregarding
portions of the time series that are considered meaningless, e.g.



noise, random fluctuations, or novelty patterns. We, therefore,
opt for isolating only the M–dimensional patterns that exhibit
a clear modulatory behavior or prominent temporal envelopes.
This is achieved by locating the peaks of the running variance
version of the time series and selecting the patterns around
such peaks. Those patterns will constitute the M–dimensional
samples to be clustered via classic techniques, e.g. k-means.

Even though this heuristic is more principled than random
sampling, it is still sensitive to outliers in the time series.
Our proposed solution exploits correntropy again as the cost
function in a clustering scheme that resembles a dictionary
learning problem with sparsity pattern equal to 1, i.e. each
input sample is represented by a single weighted version of an
atom. The complete heuristic is detailed in Algorithm 3 (where
xk

T
represents the k-th row in X). Specifically, the initial

seed for the dictionary is computed via k-means and then, we
exploit correntropy to update the clusters in a robust manner.
Hence, we address the first limitation of the shift–invariant
case by providing a robust initial dictionary (which alleviates
the computational burden of the subsequent algorithms). In
this way, instead of running all the algorithms with different
initializations, the proposed framework devotes more time
to the initial dictionary and perform a single replicate of
Algorithm 2.

The second limitation deals with the selection of an optimal
initial dictionary. Here, it is not suitable to use reconstruction
error as the metric of success due to the presence of poten-
tial outliers. Therefore in practice, we opted to run several
replicates of Algorithm 3 and choose the set with minimal
mutual coherence, µ(D), as the initial dictionary of the entire
framework [18]:

Algorithm 3 Heuristic for Initial Dictionary
Input: s,M,K
Output: D 2 IRM⇥K

sp = RunningVariance(s,M)
⇧ = Peaks(sp)
Y  {T ⇤

⌧
s|⌧ +M/2 2 ⇧}

D  KMEANS(Y,K)
while convergence == FALSE do

Assignment Step:
ki  argmax

k
|hy

i
,dki| i = 1, . . . , |⇧|

↵i  hyi,dkii i = 1, . . . , |⇧|
xi[ki] = ↵i i = 1, . . . , |⇧|
Update Stage:
for k = 1, . . .K do
wk  {i|1  i  |⇧|,xk

T
(i) 6= 0}

Ek  Y �
P

j 6=k
djx

j

T

⌦k 2 IR|⇧|⇥|wk| s.t. ⌦k(wk(i), i) = 1
ER

k
 Ek⌦k

dk  MCC-SVD(ER

k
)

end for
end while

µ(D) = max
i 6=j

|dT

i
dj | (10)

IV. RESULTS

A. 4 Different Variants of Outliers in Synthetic Data

The first set of validation experiments utilizes a pre–
established orthornormal basis (15 zero–mean Discrete Cosine
Transform atoms in a 16–dimensional space) to build synthetic
time series with random decomposition amplitudes uniformly
distributed between 0 and 1. This basis was chosen due to
its multiscale nature and its unambiguous decompositions. We
simulate 4 different scenarios of feature perturbation in the
form of impulsive noise in single time instances and patterns,
gaps in the time series, and overlap between generative func-
tions. For all the experiments, the algorithms use the following
parameters: K = 15, M = 16, ✏ = 10�4, L = 500, and
25 alternating iterations between sparse coding and dictionary
update stages.

The first variant simulates 500 non–overlapping DCT atoms
in a time series with baseline SNR of 50 dB. Then, a rate of
single time instances are affected by impulsive noise (SNR
= -20 dB). We compare the performance of 6 different algo-
rithms: Shift–Invariant K-SVD with Initial Dictionary chosen
randomly from the peaks of the running variance version of
the time series (KSVD-IniRandom) and its MCCKSVD coun-
terpart (MCCKSVD-IniRandom), Shift–Invariant K-SVD with
Initial Dictionary exploiting K-SVD as the estimation tech-
nique in Algorithm 3 (KSVD-IniKSVD), i.e. dk  SVD(ER

k
)

instead of dk  MCC-SVD(ER

k
) and its corresponding

MCCKSVD algorithm (MCCKSVD-IniKSVD), and lastly, the
proposed approach utilizing MCC–based SVD for all the
algorithms (MCCKSVD-IniMCCKSVD) and its counterpart
(KSVD-IniMCCKSVD). A total of 20 different runs are
simulated for each case of impulsive noise rate. The average
cross–correlation between the atoms in estimated and original
dictionaries is reported in Fig. 1.
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Fig. 1. Average dictionary cross–correlation for several rates of impulsive
noise in individual time instances. 15 generative DCT atoms. Baseline SNR
= 50 dB. Outlier SNR = -20 dB.

The second case is very similar to the first one with the
difference of the impulsive noise being applied to 16–sample
patches in the time series, i.e. the perturbation affects whole
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Fig. 2. Average dictionary cross–correlation for several SNRs of impulsive
noise in individual 16–dimensional sample instances. 15 generative DCT
atoms. Baseline SNR = 50 dB. Outlier rate = 0.2.
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Fig. 3. Average dictionary cross–correlation for different lengths of inserted
gaps (concatenated zeros). 15 generative DCT atoms. Baseline SNR = 50 dB.
Gap rate = 0.5.

16–dimensional patterns, instead of single time instances.
Here, the outlier rate was fixed to 0.2 and their SNR was varied
from -10 to 0 dB. Again, a total of 20 different scenarios are
simulated (500 non–overlapping DCT atoms in the time series)
and the average results are illustrated in Fig. 2.

In both impulsive noise experiments MCCKSVD-
IniMCCKSVD outperforms all of the other algorithms while,
on the other hand, the random initializers clearly bias the
estimated dictionaries. It is worth noting that the proposed
heuristic for the seed dictionary is able to set the proper path
even in the K-SVD implementations; however, they fail to
surpass MCC–based methods due to their lack of robustness.

The third case introduces a different type of perturbation:
gaps. In particular, 50 % of randomly selected patterns in the
time series are replaced by gaps (concatenated zeros). The
length of such gaps is varied from 2 to 16 samples while the
unaffected instances have a baseline SNR of 50 dB. The result
is a time series where 50 % out of the 500 DCT patterns are
incomplete. The 6 approaches are simulated for 20 different
runs. Fig. 3 summarizes the results. Again, the MCCbased
algorithms outperform their counterparts. Also in general, as
the gaps become wider, the performance degrades accordingly.

Lastly, we introduce overlapping patterns as the last variant

of outliers. The overlapping between pairs of adjacent patterns
is set to 50 %, i.e. 8 samples. Then the percentage of overlaps
is varied from 10 to 70 %. For this case, no baseline noise
is added to the time series. The result is an input where a
fixed rate (per case) of adjacent patterns are allowed an 8–
sample overlap. Table I summarizes the average results for
three algorithms. Once again, the proposed approach is robust
for several overlap rates. This suggests that the MCC–based
framework is able to implicitly handle overlapping patterns up
to a certain degree; however, more evidence is needed in order
to assess proper key parameters, such as breakdown points.

Utilizing four different sources of outliers, we demonstrate
that MCC–based algorithms are comprehensively more robust
than the state of the art in shift–invariant dictionary learning.
In general, the MCCKSVD variants yield higher dictionary
cross–correlations than their K-SVD counterparts. Also, the
heuristic proposed for the initial dictionary consistently sur-
passes the random sampling usually utilized in these settings.

TABLE I
AVERAGE DICTIONARY CROSS–CORRELATION WITH RESPECT TO

PERCENTAGE OF OVERLAPPING PATTERNS. 15 GENERATIVE DCT ATOMS.
8–SAMPLE OVERLAP BETWEEN ADJACENT PATTERNS.

Algorithm Percentage of Overlapping Patterns
10 20 30 40 50 60 70

MCCKSVD-
IniMCCKSVD 1.00 1.00 1.00 0.99 0.99 0.99 0.99
MCCKSVD-
IniRandom 0.97 0.96 0.96 0.95 0.95 0.92 0.91

KSVD-
IniRandom 0.97 0.96 0.95 0.95 0.95 0.91 0.90

B. Winding Data

We present preliminary results on the winding dataset 1.
The data come from an industrial wire winding process. Here,
we perform the dictionary estimation on the first dimension
alone (U1). The time series has significant impulsive–noise–
like patterns, i.e. spikes and dropouts (Fig. 4).

We compare the proposed MCC–based approach with a
shift–invariant version of K-SVD that uses a random sampler
for the initial dictionary (K = 3,M = 80, L = 50, ✏ = 10�4,
50 alternating iterations between sparse coding and dictionary
update stages). As Fig. 4 suggests, the estimated atoms for
MCCKSVD are less affected by the outlier patterns, i.e.
more robust than the K-SVD scheme. Once again, due to
the spikes and dropouts of the time series, the reconstructed
error would be heavily biased in this case. Therefore, it is not
possible to judge the success of the algorithm solely based on
reconstruction error (as suggested in [19]). However, visual
inspection clearly favors the proposed framework over the
MSE–based optimizations.

In the spirit of openness and to encourage reproducibility,
the MATLAB code corresponding to the proposed algorithms
and datasets is available at https://github.com/carlosloza/
ShiftInvariantMCCKSVD.

1http://alumni.cs.ucr.edu/⇠rakthant/TSEpenthesis/
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Fig. 4. A. Dimension U1 of Winding Dataset. B. Resulting atoms correspond-
ing to Shift–Invariant K-SVD. C. Resulting atoms corresponding to MCC–
based Shift–Invariant K-SVD.

V. CONCLUSION

We have derived and implemented a shift–invariant dic-
tionary learning scheme fully based on the Maximum Cor-
rentropy Criterion (MCC). First, correntropy was utilized to
obtain a robust initial dictionary that would set the “right
direction” for the greedy algorithms to follow. Second, cor-
rentropy was also exploited to update the learned dictionary
atoms in an iterative scheme that provides robustness against
outliers in the time series, e.g. spikes, dropouts, gaps, high–
amplitude impulsive noise, and even overlap. In this way, this
second asset keeps the greedy algorithm in the “right path”
and prevents possible bias towards suboptimal solutions.

The proposed framework can be easily adapted to different
knowledge discovery areas such as communications prone to
channel failure, robust blind source separation, and generative
models in general. In the future, we would like to explore
techniques to select the dimensionality of the dictionary in a
principled way in order to render a fully data–driven frame-
work for clustering of relevant time series subsequences.
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