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Abstract. We propose a data–driven, unsupervised learning framework
for one of the hallmarks of stage 2 sleep in the electroencephalogram
(EEG)—sleep spindles. Neurophysiological principles and clustering of
time series subsequences constitute the underpinnings of methods fully
based on a generative latent variable model for single–channel EEG.
Learning on the model results in representations that characterize fami-
lies of sleep spindles. The discriminative embedding transform separates
potential micro–events from ongoing background activity. Then, a hi-
erarchical clustering framework exploits Minimum Description Length
(MDL) encoding principles to e↵ectively partition the time series into
patterns belonging to clusters of di↵erent dimensions. The proposed al-
gorithm has only one main hyperparameter due to online model selection
and the flexibility provided by cross–correlation operators. Methods are
validated on the DREAMS Sleep Spindles database with results that
echo previous approaches and clinical findings. Moreover, the learned
representations provide a rich parameter space for further applications
such as sparse encoding, inference, detection, diagnosis, and modeling.
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1 INTRODUCTION

Sleep spindles constitute the hallmark of stage 2 non-REM sleep. Their gen-
eration is attributed to the mutual interaction between GABAergic reticular
neurons and excitatory thalamic cells [24] while long–range cortical projections
are believed to regulate their temporal synchronization [5]. In terms of behav-
ioral and functional correlates, sleep spindles have been associated to memory
consolidation processes [22, 4], cortical development [14], sleep deprivation [7],
and are even regarded as potential biomarkers for psychiatric disorders, such as
schizophrenia [8, 17]. Therefore, principled detection and modeling are crucial.
In the clinical field, EEGers usually utilize scoring rules and norms well docu-
mented in the literature [21, 18]; yet, the ever–increasing amount of data and



the advent of machine learning have bolstered the use of automatic sleep spindle
detectors as an additional tool for clinicians and neuroscientists [12, 6, 19].

A sleep spindle is defined as a burst in the 11–15 Hz range (sigma band)
with duration between 0.5 and 2 s. and a distinctive waxing–wanning enve-
lope. Moreover, as a type of transient events in the EEG, sleep spindles require
particular constraints for their detection. Such conditions are derived from both
neurophysiology [18] and empirical clinical findings [21]. Automatic detectors ex-
plicitly incorporate such constraints into their framework, e.g. amplitude–based
thresholds that are cross–validated to ground truth [8, 6]. Classic detectors focus
only on timing and amplitude features; yet, as neurophysiological micro–events,
sleep spindles are also characterized by duration, frequency, modulation, and,
from a generative model stance, by their encoding indexes. All these features
can be collectively deemed as representations. A generalized detector should,
then, be able to learn such representations in a data–driven manner.

By leveraging the sparse nature of the micro–events, we pose them as samples
from a Temporal Marked Point Process (TMPP) that activate elements from a
set of vectors (i.e. a dictionary) over time—a generative latent variable model for
sleep spindles. A fully unsupervised framework aims to estimate the conditional
densities of the latent variables given a set of neuromodulations: generating dic-
tionary (centers of mass in vectors spaces of di↵erent dimensionalities), intensity
function of the TMPP timings and density of the TMPP marks (amplitudes
and indexes). We propose a novel learning algorithm that incorporates neuro-
physiological constraints and principled techniques for clustering of time series
subsequences. We exploit Freeman’s theories [9] to restrict the search space of
relevant events. Then, a hierarchical clustering algorithm creates a partitioning
of the search space by means of Minimum Description Length (MDL) encoding
[1]. The result is twofold: learned representations suitable for modeling, and sets
of latent variables appropriate for inference.

One of the major advantages of the proposed method is its data–driven na-
ture. Durations of relevant neuromodulations are not limited to a set of user–
defined inputs; they are learned on an unsupervised fashion as a result of cross–
correlation operators that guarantee flexibility and fine temporal resolution.
Also, MDL encoding performs online model selection in a fast, greedy manner.
Thus, the proposed algorithm virtually requires only one hyperparameter that is
closely related to amplitude–based thresholds of classic sleep spindle detectors.

We validate the methods on the DREAMS Sleep Spindles database [25] and
obtain estimates of the representation densities. We compare them with their
counterparts from visual scorers and quantify their similarity via the Kullback–
Leibler (KL) divergence. We also analyze the e↵ect of the only hyperparameter
in terms of receiver operating characteristics (ROC) curves and KL divergences.
The results highlight the potential of the proposed method when dealing with
principled detection and modeling of sleep spindles. The rest of the paper is or-
ganized as follows: Section 2 details the problem to solve while Section 3 presents
the methods and rationales behind their choice, Section 4 showcases the results,
and, lastly, Section 5 concludes the paper.



2 A problem beyond detection

Let ỹ[n] be a bandpassed single–channel EEG trace that can be decomposed into
two time series according to the dynamical regimes of the generating network:

ỹ[n] =

⇢
y[n] if Network is Active (Y State)
z[n] if Network is at Rest (Z State)

(1)

where y[n] is the ideal, noiseless component with scale–specific micro–events
(sleep spindles), and z[n] is the ongoing, background activity. A mixture model
characterizes the probability density of ỹ[n] as:

P (ỹ[n]) = pY P (ỹ[n]|Y,⇥Y ) + pZP (ỹ[n]|Z,⇥Z) (2)

where pY and pZ represent the probabilities of states Y and Z parameterized
by ⇥Y and ⇥Z , respectively (pY = 1� pZ).

A linear model posits y[n] as the weighted sum of N ideal patterns, d 2 D,
shifted over time:

y[n] =
NX

i=1

1X

m=�1
↵i�[n� ⌧i �m]d!i [m] (3)

where �[n] is the Dirac delta function. The elements of the dictionary, D =
{d!j}Kj=1, do not necessarily have the same dimensionality, i.e. they represent
templates with di↵erent durations or centers of mass in vector spaces of di↵erent
dimensions; let such dimensions be the set {�i}Ni=1. Similar generative models
with sparsity constraints have been proposed for the auditory nerve [23].

ỹ[n] can be either modeled as the noisy superposition of samples from a
TMPP or as the observable variable from a generative latent variable model
(Fig. 1) with two distinctive modes: Z, a background component that encodes
the spontaneous, disorganized activity of the generating network during rest,
and Y , an active component represented as reoccurring transient micro–events
that reflect the spatiotemporal synchronization of neuronal assemblies [18, 3].
Freeman posited that Z can be modeled as a Gaussian distribution [10] (⇥Z ,
{µZ ,�Z}). Y is the result of joint contributions from latent variables in the form
of timings (⌧), amplitudes (↵), encoding indices (!), and generating dictionary
D, i.e.⇥Y , {⌧,↵,!,D}. The shallow nature of the graph admits the equivalence
between latent variables and features or representations. Moreover, D carries its
own features, e.g. duration, frequency, and Q–factor. Consequently, learning on
the model can be posed as a type of unsupervised representation learning [2].

Classic sleep spindles detectors usually estimate � and ⌧ leaving D unad-
dressed [12, 6, 19]. Given the dictionary D (where usually K � N), the goal in
analysis, inference, encoding or detection is to estimate the shifts ⌧ , indices !,
and a surrogate of the weights ↵, for a constrained optimization problem, e.g.
Matching Pursuit with the overcomplete Gabor basis as D [26]. Estimating D
is challenging due to the inherent dynamics of the EEG—unlike classic blind



source separation problems, the relevant sources of y[n] are shift–invariant, non–
overlapping and transient. Also, a principled decomposition should discriminate
between y[n] and z[n] while preserving the original micro–events. The general-
ized detector should, then, estimate parameters beyond shifts and durations, i.e.
given ỹ[n], the goal in an unsupervised framework is to learn !, ⌧ , ↵, �, and D.

3 Methods

The solution to the problem of the previous section is combinatorial in nature.
In [15], we propose a solution based on shift–invariant k–means that results in
� 2 IRM , i.e. dictionary elements with predefined duration. Now, we generalize
the implementation by, first, restricting the search space and, then, exploiting
MDL–based hierarchical clustering to yield prototypical patterns of di↵erent
durations corresponding to reoccurring sleep spindles in the EEG. Densities of
the remaining latent variables naturally arise from the learning process (Fig. 2).

3.1 The Discriminative Embedding Transform

The first step is to isolate y[n] by exploiting the dynamical properties of the
EEG. According to Freeman’s experimental results, the EEG amplitudes during
rest periods resemble a Gaussian distribution, while transitions to work states
result in deviations from Gaussianity according to higher–order moments [9].
Both stages, rest and work, alternate in the EEG traces and give rise to transient
neuromodulations as a result of the spatiotemporal synchronization of neuronal
assemblies [18]. If ỹ[n] is the result of linear filtering, the Gaussian/Non–Gaussian
properties during rest/active regimes are preserved for the bandpassed traces.
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Fig. 1: Generative model of bandpassed single–channel EEG. Z is characterized
by the background EEG mean and standard deviation (blue). Y consists of latent
variables (red) in the form of timings, weights, indices, and generating dictionary
with elements from vector spaces of di↵erent dimensions. Durations, � (green),
are features from D. Mixing between regimes over time results in ỹ[n].
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Fig. 2: Proposed generalized sleep spindles detector. Input: Bandpassed single–
channel EEG trace, ỹ[n] (top row). Discriminative embedding transform restricts
the search space and MDL–based clustering creates a hierarchical structure of
patterns from vector spaces of di↵erent dimensions. Output: Representations
and set of sleep spindles prototypes (D), i.e. clusters, of di↵erent durations.

Definition 1. The M–sample–long subsequence from ỹ[n] centered at the time
instance t = i is known as M–snippet:

ỹi = ỹ[i�M/2 : i+M/2] s.t i = M/2,M/2 + 1, . . . , ⌘ �M/2 (4)

where ⌘ is the number of sampled values in ỹ[n]. One of the goals of the general-
ized detector is to discriminate betweenM–snippets generated by Z (background
subsequences) and M–snippets with embedded micro–events generated by Y .

In [16], the embedding transform was introduced as a novel tool to assess
stationarity of bandpassed single–channel EEG recordings. In particular, the
input time series is non–linearly decomposed into two components based on a
surrogate distribution of constrained `2–norms, �M :

�M = �M (ỹ[n]) (5)

= ||ỹ[⇡i �M/2 : ⇡i +M/2]||2 s.t. ⇡i 2 ⇧

What di↵erentiates this approach from a regular embedding is the way the set ⇧
is built: the algorithm starts by isolating the indices where relevant modulatory
activity is present (peak detection via moving averages or instantaneous ampli-
tudes). Then, the indices corresponding to the remaining unmodulated patterns
complete the set ⇧. For further details of the algorithm, refer to [16].

After �M is built, we posit that the M–snippets generated by Z are mapped
to a chi–distribution with M degrees of freedom in the �M space; this density,
for large M , results in a Gaussian by the Central Limit Theorem. Conversely,
potential relevant sleep spindles, i.e. y[n], are mapped to a second mode in



�M . M–snippets with corresponding �M values larger than a hyperparameter

threshold � are collected in the matrix X 2 IRM⇥N̂ :

xi = ỹ[⇡i �M/2 : ⇡i +M/2]T (6)

s.t. ||ỹ[⇡i �M/2 : ⇡i +M/2]||2 � �

where xi is the i-th column ofX. In this way, sleep spindles timings are estimated
in a similar fashion as classic threshold–based detector strategies [12]:

{⌧i}N̂i=1 = {⇡ | ||ỹ⇡||2 � � and ⇡ 2 ⇧} (7)

In short, X restricts the search space of ỹ[n] to N̂ potential embedded M–
sample–long micro–events.

3.2 MDL–based Clustering

After the search space is e�ciently restricted, it is necessary to find reoccur-
ring patterns in X. A naive solution would exploit classic clustering algorithms,
such as k–means, in the M–dimensional space of the inputs; yet, the solution
would include clusters deemed as meaningless [13] due to two main reasons:
variable time o↵sets of patterns from the same cluster, i.e. shift–invariance, and
the presence of micro–events of di↵erent durations embedded in M–snippets. A
plausible solution must address both problems in a principled manner. The for-
mer problem is managed via template matching (nearest neighbor search) based
on cross-correlations while the latter exploits principles of MDL encoding.

A hierarchical clustering framework greedily selects the number of clusters
and estimates reoccurring patterns of di↵erent durations by exploiting principles
of MDL compression. Let DL(T ) be the length of the bit level representation of
time series T with length m, i.e. the entropy of T times m.

DL(T ) = �m

X

t

P (T = t) log2 P (T = t) (8)

Similarly, the conditional description length of a sequence A after being encoded
with a hypothesis H is given by DL(A|H) = DL(A�H), e.g. the cost of the en-
coding. This principle was applied to hierarchical clustering of time series in [20]
under the connotation of time series epenthesis. Essentially, the DL(·) operator
is a parameter–free tool to evaluate the 3 basic operations in hierarchical clus-
tering: creation of a cluster, assignment of input to existing cluster, and merging
of clusters. The cost function BS represents the bits saved after performing the
three basic operations, for instance:

BS after creating cluster C from subsequences A and B:

BS = DL(A) +DL(B)�DLC(C) (9)

where DLC(C) = DL(H) +
P

A2C
DL(A|H) � max

A2C
DL(A|H) is the number of

bits needed to represent all subsequences belonging to cluster C and H is the
center subsequence of the cluster under consideration.



BS after adding subsequence A to cluster C:

BS = DL(A) +DLC(C)�DLC(C 0) (10)

where C
0 is the new cluster after adding A to C.

BS for merging clusters C1 and C2 into new cluster C 0:

BS = DLC(C1) +DLC(C2)�DLC(C 0) (11)

The algorithm exposed in [20] utilizes motif discovery algorithms to initialize
novel clusters. We propose cross–correlation operations as suitable alternatives
for discovering such motifs from X, estimating distances between subsequences
and corresponding clusters (↵), updating membership vectors (!), and, ulti-
mately, learning shift–invariant prototypical patterns from vectors spaces of dif-
ferent dimensions. MDL–based encoding basically allows comparison of costs
involving clusters of di↵erent dimensionalities, which would be prohibitive and
unprincipled for the Euclidean distance. The final version of the algorithm eval-
uates at each step which operation results in the maximal BS and proceeds with
such option. Iterations continue until the set X is exhausted.

The major advantage of this hierarchical clustering framework is twofold:
model selection is performed in a greedy manner (K is learned from data) and
the resulting sleep spindles prototypes are not restricted to fixed–length patterns.
The first hyperparameter, �, plays the role of an `2–norm–based threshold of the
generalized detector, while the second hyperparameter, �, is a set of approxi-
mate durations of prospective sleep spindles. Yet, thanks to cross–correlation
operators, the final clusters are not necessarily restricted to the elements of
�; this emphasizes the inherent adaptive nature of the proposed framework.
Moreover, � can be chosen in a principled manner according to the rhythm
under consideration [18]. Therefore, the proposed generalized detector is a vir-
tually one–hyperparameter learning mechanism that sequentially selects in a
greedy manner the operation that maximizes the bits saved among the possible
�–dimensional inputs, where � 2 � and �  M .

4 Results

Sleep spindles latent variables are estimated on the DREAMS Sleep Spindles
database [25] for the available 8 subjects. Single–channel (either CZ-A1 or C3-
A1), 30–minute–long EEG traces were made available with their corresponding
visual scorings of sleep spindles (sampling frequencies ranging from 50 to 200 Hz).
The sigma band is isolated using Butterworth filters with quality factor (ratio of
central frequency and bandwidth) Q ⇡ 2.M is set equal to the sample equivalent
of 1.5 seconds. � is set to [0.5:0.1:1.5] sec. according to scoring criteria of sleep
spindles [21, 18, 19]. For proper validation and estimation of density similarities,
we only utilize the scores from one (visual scorer 1) of the two experts due to
the strong bias in durations from visual scorer 2—zero standard deviations and
mean durations of 1 s.
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Fig. 3: E↵ects of the Embedding Transform–based threshold, �, over the
M–snippet domain and performance in terms of sleep spindles detection.

ROC curves are a good starting point to validate estimated timings and
durations in terms of True Positive Rates (TPR) and False Positive Rates (FPR).
Fig. 3 shows ROC curves (grand average) over � = µZM + �

0 ⇥ �ZM where
µZM and �ZM are the mean and standard deviation of the set of M–snippets
generated from Z, respectively. We test �0 in the range [-3:0.5:3]. Also to reduce
the FPR, the sigma index [11, 12] is exploited to reject alpha intrusions and
EMG interference. In particular, the sigma index threshold, ��, is a lower bound
for the ratio between powers in the sigma band and neighboring rhythms. Fig.
3b compares ROC curves for several values of �� while Fig. 3a indicates the
estimated � thresholds in �M for a sample subject. In general, the ROC curves
are very robust for a wide range of �� and quickly saturate for 2  �

0  3. Best
cases correspond to a global sensitivity of 67.7% and FPR = 0.154 compared to
70.2% and 0.264 from the original report [6], respectively.

Next, we validate the estimated amplitudes and durations. Here it is worth
noting that classic sleep spindles detectors (and visual scorers) do not share the
generative nature of the generalized detector and, hence, define amplitude as
the absolute value of the peak amplitude during a micro–event. Duration, as
previously noted, is not a latent variable, but rather a representation inferred
from the learned dictionary; hence, durations parameterize—and act as surro-
gate features of—D. Similarity between scored and estimated representations is
assessed via the KL divergence; in this way, we generalize the concepts classic
detectors gauge with TPRs and FPRs. Amplitude representations display a local
minimum KL divergence at �

0 = 0.5, while durations are relatively una↵ected
(Fig. 4a). This implies that the generalized detector robustly learns the dura-
tion density, and therefore, is able to robustly learn the generating dictionary
(at least in terms of surrogate features). Conversely, KL divergences of the am-
plitudes provide a novel criterion for threshold selection based on representation
densities from a generative model instead of classic performance measures from
ROC curves. Learned densities (Fig. 4b and 4c) echo the experimental results of
Purcell et al. [19] in a massive study of sleep spindles characterization.



(a) KL divergence of representations. (b) Amplitude densities of sleep spindles.

(c) Duration densities of sleep spindles. (d) Joint density of weights and duration.

Fig. 4: Learned densities from single–channel EEGs and associated measures.
(a) KL divergence between learned and scored representations. (b) and (c) Es-
timated densities for sleep spindles amplitude and duration (�0 = 0.5). (d) Con-
tour plot of bivariate joint density of weights and duration from generative model
(�0 = 0.5). Color bar represents probability density—a surrogate of the mem-
bership index latent variable, !.

The remaining latent variables and representations are analyzed next. The
weights, ↵, represent the distance between detected micro–events and their corre-
sponding clusters or prototypes, whereas D can be partially characterized by the
duration �. Their joint bivariate density clearly indicates two main modes corre-
sponding to sleep spindles in the range [0.5, 1] seconds and symmetric marginal
weight densities (Fig. 4d). Membership indices, !, shape the probability density
over the weight–duration space and, hence, define the bimodal density. The latent
variable model can easily sample from this distribution to generate micro–events,
and hence, simulate single–channel EEG traces with embedded sleep spindles.

Table 1 summarizes some statistics from the learned latent variables for each
subject. �Z is the estimated standard deviation of the background component
(a measure of the rest RMS of this rhythm), the median of the inter micro–
event interval (IMEI) characterizes the shifts ⌧ in a similar manner as interspike
intervals for units. Averages of weight magnitudes are also reported (↵ densities
were bimodal and symmetric around zero). Lastly, median durations and number
of clusters, K, parameterize the learned dictionaries succinctly. The measures of
Table 1 can be further exploited for inference, e.g. sleep disorder diagnosis; large–
scale modeling; and encoding—Matching Pursuit–based detectors [26] with an
ensemble dictionary as suitable alternative to wavelets or Gabor bases.



Table 1: Estimated parameters from learned representations. SX denotes Subject
X according to DREAMS Sleep Spindles database. µZ = 0 for bandpassed traces.

Subject
S1 S2 S3 S4 S5 S6 S7 S8

�Z (µV) 4.08 5.07 3.45 4.32 3.29 3.51 4.42 3.49
med(IMEI) (s.) 4.44 5.10 4.94 8.09 4.16 4.89 4.07 3.30
avg(|↵|) 73.35 104.04 36.45 100.82 73.49 82.91 87.07 73.09
med(�) (s.) 0.87 1.00 1.06 0.71 0.66 0.69 0.77 0.80
K 62 53 55 36 49 42 48 61

Fig. 5: Sample prototypical sleep spindles learned from single–channel EEGs.
Clusters with highest number of micro–events assignments are shown.(�0 = 0.5).

Fig. 5 depicts some of the learned clusters for each subject. The proposed
one–hyperparameter method discovers in a data–driven manner prototypical
sleep spindles with a wide range of temporal supports and modulatory patterns.
Moreover, D can be characterized by its own features or representations be-
yond duration, e.g. frequency, number of oscillations, symmetry, and Q–factor.
This opens the door to rich parameter spaces where inference and modeling
are appealing. For instance, Fig. 6 characterizes the dictionaries via their power
spectral density (PSD). The smoothing e↵ect in the cluster estimation resembles
ensemble averages in spectral estimation, which helps mitigate the bias.

5 Conclusion

A generative latent variable model for sleep spindles generalizes classic detectors
to be able to learn representations from two physiological regimes in an unsu-
pervised manner. The proposed methodology discovers bases from vector spaces
of di↵erent dimensions, i.e. clusters of time series subsequences of di↵erent du-
rations. The one–hyperparameter algorithm e�ciently learns features that can
be further exploited by clinicians as tools in encoding, detection, inference, and



modeling. Future work includes iterative estimation of the latent variables in a
Bayesian framework where the EM algorithm results advantageous.

Fig. 6: Estimated Power Spectral Densities of sleep spindles prototypes (Autore-
gressive model–based estimation with AIC model selection, �0 = 0.5).
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