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Abstract— We propose a novel non–linear source separation
technique for single–channel, multi–trial Electroencephalogram
(EEG). First, a generative model is posited as the generating
process behind bandpassed traces. In particular, the inputs
are conceived as the state variable of a switching mechanism
that samples temporal snippets from two distributions corre-
sponding to a background component and a phasic event or
wave packet counterpart. In order to non–linearly separate the
sources, we propose a neurophysiologically principled, non–
linear mapping to a space of `2–norms via the Embedding
Transform. In this way, the estimated phasic event component—
an ideal time series where neuromodulations are emphasized—
is isolated for further processing. The algorithm is tested on
the Brain–Computer Interface (BCI) Competition 4 dataset 2a.
The results not only surpass classic power–based measures, but
also highlight the discriminative nature of scale–specific wave
packets in motor imagery tasks. The inherent switching mecha-
nism that generates the traces suggests a transient, temporally
sparse feature of the neuromodulations that can be further
exploited in applications where compression is advantageous.

Index Terms— BCI, EEG, Embedding Transform, Wave
Packets

I. INTRODUCTION

The Electroencephalogram (EEG) constitutes a key meso-
scopic signature of the brain. Specifically, scale–specific
events are the result of spatio–temporal synchronization
of neuronal assemblies at different topographical levels or
recruitment densities [1]. These temporal patterns are in-
herently transient due to energy constraints and the need
of fine multi–scale, time–dependent encoding of internal
physiological processes or external stimuli. Examples of
relevant EEG–based applications include sleep scoring [2],
epilepsy studies [3], prediction in Parkinson’s disease [4],
and Brain–Computer Interfaces (BCI) [5].

EEG–based BCIs provide a suitable non–invasive alter-
native to model encoding and decoding mechanisms in
the brain without the inherent risks associated to surgical
procedures. In particular, paralyzed or locked in patients
have successfully utilized this type of BCIs for cursor
control, computer communication and wheelchair control via
voluntary modulation of oscillatory rhythms during sensory–
related tasks [6], [7], [5]. For instance, slow cortical poten-
tials and the mu (8–12 Hz) and beta (18–26 Hz) rhythms have
been associated to prediction and discrimination of motor
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imagery tasks [8], [9]. Such systems are anchored on the
neurophysiological principles of event–related synchroniza-
tion (ERS) and desynchronization (ERD) in the EEG [10].

The EEG reflects the dynamics and fractal nature of its
generating structure. The brain features distinctive perpetual
transitions over time—from complex, unpredictable chaos
to robust, briefly predictable epochs. Likewise, the EEG
displays ceaseless shifts between temporally uncorrelated
activity and organized, correlated signatures in the form of
transient patterns over time [1]. In dynamical systems, such
behavior is known as criticality: a type of stability where
the network reorganizes its dynamics back and forth due to
perturbations (either internal, e.g. physiological processes, or
external, e.g. sensory stimuli) [11]. The challenge of quan-
titative EEG analysis is to discriminate between modes in a
principled manner and find pertinent behavioral correlates.

Early attempts at mode discrimination estimated the Power
Spectral Density of the EEG in order to model the spectral
distribution of the sources; yet, such approaches completely
disregard the phase of the input, i.e. temporal information
was lost. Then, Time–Frequency decompositions incorpo-
rated a time component to the modeling framework with
the Short–Time Fourier Transform and Wavelet analysis
(for a detailed review, see [12]); however, the temporal
segmentation, i.e. choice of window parameter, is still an
open subject and application–dependent problem [13], [14].

We propose a non–linear source separation method for
the bandpassed EEG where neurophysiological principles are
exploited in order to isolate snippets that discriminate motor
tasks in multi–channel BCIs. The framework relies on the
features of the EEG dynamics to estimate a threshold that
isolates the unorganized activity (i.e. a background com-
ponent) from the relevant spatio–temporal signatures, also
known as wave packets (a term coined by Freeman [12]). We
exploit the Embedding Transform to non–linearly map the in-
puts to a surrogate space where both modes can be separated
[15]. The proposed single–parameter algorithm is completely
data–driven, does not rely on add–hoc thresholds, and, unlike
spectral estimation methods, features exceptional temporal
resolution. We test the algorithm on the publicly available
BCI Competition 4 Dataset 2a with promising results that
not only highlight the plausibility of the framework, but also
reveal the temporally sparse nature of scale–specific wave
packets in the EEG. The paper continues as follows: Section
2 details the rationale behind the Discriminant Embedding
Transform alongside its practical implementation. Section
3 describes the experimental results, and lastly, Section 4
concludes the paper and discusses further work.



II. THE DISCRIMINATIVE EMBEDDING
TRANSFORM

Let ỹ[n] be a bandpassed, single–channel, single–trial EEG
trace that can be separated in two components:

ỹ[n] = y[n] + z[n] (1)

where y[n] is the ideal, noiseless time series that con-
tains scale–specific reoccurring patterns (neuromodulations
or wave packets), i.e. a phasic event component, and z[n]
is the ongoing, spontaneous EEG activity—a background
component. ỹ[n] can be conceived as the output of a switch-
ing mechanism that samples snippets from two generating
distributions according to a phasic event rate. Long–standing
theories regarding event–related potential (ERP) generation
support the presence of two components in the EEG, i.e.
stimulation elicits a response from neuronal populations that
is both additive and independent from ongoing activity [16].

Mode separation is possible only if additional constraints
are imposed. In particular, the experimental findings of
Walter J. Freeman are harnessed here [12]. If the original,
unfiltered version of ỹ[n] is the state variable of a generating
network at rest, the amplitudes will resemble a Gaussian
distribution (±3 standard deviations). If on the other hand,
the network shifts toward an active state, the resulting
raw EEG amplitudes deviate from Gaussianity according
to higher–order moments. Moreover, if ỹ[n] is the result
of linear filtering, the Gaussian/Non–Gaussian regimes are
preserved according to the state of the network.

In [15], the Embedding Transform was proposed as a
modeling approach of both modes. A bandpassed, single–
channel, N–sample–long, EEG trace, ỹk[n], from a set of
T trials is non–linearly mapped to a surrogate space of
constrained `2–norms, β(k)

M :

β
(k)
M = ||ỹk[πi −M/2 : πi +M/2]||2 (2)

s.t. πi ∈ Π

where M is the embedding parameter (in samples) and Π
is the set of middle–points of all potential non–overlapping
windows of length M in ỹk[n]. Unlike classic embeddings
where M–sample–long windows are slided over the input,
the Embedding Transform builds the set Π in a sequen-
tial scheme: the algorithm starts by isolating the indices
where relevant modulatory activity is present (exploiting the
smoothed instantaneous amplitude of the analytic signal).
Lastly, the indices corresponding to the remaining unmod-
ulated snippets complete the set Π. Algorithm 1 details the
non–linear mapping for a single EEG recording. For multi–
trial experiments, the final set of `2–norms is equal to:

βM =

T⋃
k=1

β
(k)
M (3)

The Embedding Transform maps the snippets from z[n] to a
chi–distribution with M degrees of freedom in the βM space;
furthermore for large embeddings, this density defaults to
a Gaussian distribution by the Central Limit Theorem. On

the other hand, snippets from the phasic event component
are mapped to a second mode in βM . Separability can be
achieved via higher–order moments (see [17]); however, we
opt for a parametric fitting of a Gaussian mixture with 2
components where the threshold is equal to:

γ = µZ + 3σZ (4)

where µZ and σZ are the mean and standard deviation of
the Gaussian corresponding to the background component in
the βM space. In summary, the Discriminative Embedding
Transform non–linearly estimates ŷk[n] such that its M–
sample–long snippets are larger than the threshold, γ:

ŷk[n] =
∑
i

ỹk[πi −M/2 : πi +M/2] (5)

s. t. ||ỹk[πi −M/2 : πi +M/2]||2 ≥ γ

The estimated phasic event trace, ŷk[n], is a collection of
potential M–sample–long wave packets (M–snippets) that
can be utilized on further analysis, inference and discrimina-
tive frameworks. The only parameter, M , must be set based
on Neurophysiology and, more specifically, according to the
scale under analysis, i.e. oscillatory EEG rhythm of study.

Fig. 1 illustrates the density estimation of βM and the
corresponding thresholds for the 9 subjects of the BCI
Competition 4 dataset 2a. γ effectively delineates the sep-
aration between modes (background component to the left
and phasic event component to the right). In general, the
distributions have positive skewness, which suggests a high
density of spontaneous activity and a low probability of
high–amplitude M–snippets, i.e. relevant wave packets have
a transient and temporally sparse nature. Consequently, the
Discriminative Embedding Transform performs a non–linear,
neurophysiologically principled filtering of the inputs where
only a small fraction of the samples are preserved.

Algorithm 1 Embedding Transform.
Input: ỹk[n],M

Output: β(k)
M

β
(k)
M ← ∅
r[n]← 1N×1
y′[n] = envelope(ỹk[n])
s[n] = smooth(y′[n],M)
{ζi}pi=1 = peaks(s[n],M)
{Begin with potential modulated patterns}
for i = 1, . . . , p do
β
(k)
M ← β

(k)
M ∪ ||ỹk[ζi −M/2 : ζi +M/2]||2

r[ζi −M/2 : ζi +M/2] = 0M×1
end for
{Proceed with non–modulated patterns until exhaustion}
{ζi}pi=1 ← findMsnippets(r[n],M)
if ζ 6= ∅ then

for i = 1, . . . , p do
β
(k)
M ← β

(k)
M ∪ ||ỹk[ζi −M/2 : ζi +M/2]||2

end for
end if
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Fig. 1. βM distributions after the Embedding Transform. Vertical lines
show estimated thresholds, γ. SX denotes Subject X in BCI Competition 4
dataset 2a. M = 125 samples. Channel C3. Left hand movement.

III. RESULTS

The proposed framework is tested on the BCI Competition
4 dataset 2a [18]. The cue–based BCI paradigm consisted
of four motor imagery tasks. For this study, we focused on
classes 1 and 2 (left and right hand movement, respectively)
of the first session. Data from every subject (9 in total)
comprised of 72 trials per class, 22 Ag/AgCl EEG recording
channels sampled at 250 Hz and bandpassed between 0.5 Hz
and 100 Hz.

Each trial consisted on a visual cue determining the
beginning of the motor imagery task. Each subject was
instructed to perform the requested movement for 6 seconds
until the visual cue disappeared. For the current analysis, we
extracted 4–second–long segment corresponding to 2 seconds
before and after movement cue. A 5-th order Butterworth
filter with 3 dB cut–off frequencies of 8 Hz and 35 Hz was
used to isolate the mu and beta rhythms.

Each ensemble of bandpassed, single–channel, multi–trial
recordings (per task) are mapped to their corresponding
βM spaces and subsequently non–linearly separated into
background and phasic event components. A value of M =
125 samples (0.5 sec.) is utilized to capture the scale–specific
nature of the rhythms of interest. The first set of results
showcases the shifts in dynamics around movement cue.
Particularly, we estimate the average number of wave packets
before and after visual cue for 2–second intervals. Then, the
difference between pre and post estimates is calculated for
each channel. Fig. 2 shows the topographical distribution
of the phasic event rates difference for two subjects. The
mirroring effect resembles the contralateral ERS and ipsilat-
eral ERD of the central sensorimotor rhythm [10]; yet, the
estimates are not the result of amplitude–based encoding, but
rather of rate–based encoding at a mesoscopic level.

Next, the effective compression rate of the system is
estimated. Let N and N̂ be the number of non–zero discrete
time samples in ỹ[n] and ŷ[n], respectively. The rate, K, is
simply equal to N̂

N and determines the fraction of samples
preserved in ŷ[n] by the non–linear filtering scheme. Then,
average `2–norms from the M–snippets corresponding to
phasic event and background components are estimated per

Fig. 2. Topographical distribution of wave packet rates difference (mea-
sured in neuromodulations per second) after non–linear source separation
via the Discriminative Embedding Transform. Top row: Subject 1. Bottom
row: Subject 7. Left and right columns correspond to left and right hand
movement, respectively.

channel. Logarithms of the differences constitute the fea-
tures. The 22–dimensional feature vectors are projected to a
one–dimensional subspace via Linear Discriminant Analysis
(LDA). The separability of both classes in this lower dimen-
sional space is determined exploiting a well known measure
in unsupervised learning—the average Silhouette value [19].
Particularly for the i-th point, its Silhouette Si, is defined as:

Si =
bi − ai

max{ai, bi}
(6)

where bi is the average Euclidean distance of i to all points
in the cluster where i is not a member, and ai is the average
distance between i and all the points in the same cluster.
Si is bounded between -1 (poor clustering solution) and 1
(high separability between classes). Similarly, the average
Silhouette value is estimated for the features computed from
the original, bandpassed EEG traces, ỹ[n]. To allow fair
comparisons, we estimated the log–variance using only the
2–second–long segments after visual cue, i.e. the equivalent
compression rate of the filtered EEG is K = 0.5.

Fig. 3 summarizes the relationship between separability of
motor imagery classes and compression rate for all 9 subjects
in the dataset. Most of the cases display a compression rate
around 0.05, i.e. in average, less than 5% of the samples
in the multivariate time series are needed to achieve high
discriminability between tasks. The grand average Silhouette
value for the phasic event components is 0.46, while the
filtered traces achieve a mean of 0.39. Thus, the proposed
framework produces higher separabilities with significantly
less data. This confirms the discriminant and sparse nature
of the wave packets in the EEG.
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Fig. 3. Average Silhouette values versus compression rate for all subjects.
Red circles and blue dots represent measures derived from wave packets and
filtered EEG, respectively. Black (0.05, 0.46) and cyan (0.5, 0.39) marks
indicate grand averages over subjects.

Fig. 3 also suggests that the proposed framework is a data–
driven source selector—it implicitly selects which channels
are more active during the task and isolates the relevant
M–snippets accordingly. Yet, this statement must be taken
with a grain of salt because the selection is solely based on
the rhythm under study. The remaining rhythms might be
correlated to the task in other ways we are not quantifying.

Lastly, we investigated the effect of the M parameter
over the average separability between classes and compres-
sion rate. As Table I indicates, the compression rate, K,
monotonically increases with M , i.e. when the M–snippets
grow in dimensionality. On the other hand, the average
discriminability between motor tasks seems fairly stable.
This suggests the proposed algorithm is robust for a suitable
and neurophysiologically principled interval of M .

TABLE I
GRAND AVERAGE SILHOUETTE VALUE AND COMPRESSION RATE AS A

FUNCTION OF EMBEDDING TRANSFORM FREE PARAMETER, M .

M (s.)
0.40 0.45 0.50 0.55 0.60

Silhouette 0.462 0.474 0.458 0.466 0.467
K 0.050 0.050 0.051 0.053 0.054

IV. CONCLUSION
We proposed a non–linear source separation framework to

isolate scale–specific wave packets from bandpassed single–
channel, multi–trial EEG recordings. The Embedding Trans-
form followed by non–linear mode separation allows to
preserve the discriminant signatures of the traces in a data–
driven scheme fully based on neurophysiological principles.
An EEG–based BCI showcases the potential of the non–
linear mechanism by achieving higher discriminability mea-
sures than whole, filtered EEG traces. The algorithms are
also robust and fairly insensitive to the only free parameter
of the model.

In the future, we will analyze in depth the constraints for
optimal mode separation in the βM domain; for instance γ
for Subject 9 in Fig. 1 is clearly biased. This is most likely
due to the inherent dynamics of the traces or a consequence
of a parametric Gaussian mixture fitting. Additionally, EEG

is a complex, non–linear, high–dimensional, multivariate
time series and, as such, can benefit from frameworks
focused on compression rates and high bandwidths, e.g.
compressed sensing, sparse coding, and lossy compression.
Future work can harness the principles from those fields
and formally define a compression framework for the EEG
where only discrete events highly correlated to physiological
processes or external stimuli are encoded.
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