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Abstract Correntropy is a dependence measure that goes beyond Gaussian envi-
ronments and optimizations based on Minimum Squared Error (MSE). Its ability to
induce a metric that is fully modulated by a single parameter makes it an attractive
tool for adaptive signal processing. We propose a sparse modeling framework based
on the dictionary learning technique known as K–SVD where Correntropy replaces
MSE in the sparse coding and dictionary update subroutines. The former yields a
robust variant of Orthogonal Matching Pursuit while the latter exploits robust Sin-
gular Value Decompositions. The result is Correntropy–based dictionary learning.
The data–driven nature of the approach combines two appealing features in unsuper-
vised learning—robustness and sparseness—without adding hyperparameters to the
framework. Robust recovery of bases in synthetic data and image denoising under
impulsive noise confirm the advantages of the proposed techniques.

1 Introduction

Sparse modeling refers to the mechanisms involved in the learning of a linear gener-
ative model where the inputs are the result of sparse activations of selected vectors
from an overcomplete basis. Its rationale comes from principles of parsimony where
it is advantageous to represent a given phenomenon with as few variables as pos-
sible. Sparse modeling has been particularly appealing to two fields with (usually)
different objectives and methodologies: statistics [2, 18, 4] and signal processing
[13, 6, 5]. In neuroscience, Olshausen and Field [15] paved the way to what is cur-
rently known as dictionary learning—instead of using a fixed off–the–shelf basis,
the authors proposed a fully data–driven learning scheme to estimate said basis,
also known as dictionary.
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In Image Processing and Computer Vision, sparse modeling is exploited for de-
noising [16, 7], inpainting [12], and demosaicking [11]. Most of these applications
rely on K–SVD [1]—the well known dictionary learning technique that exploits a
block coordinate descent approach to reach a local stationary point of a constrained
optimization problem. Results are optimal under additive homogeneous Gaussian
noise. Yet, if the underlying error deviates from normality, e.g. in the presence of
outliers in the form of missing pixels or impulsive noise, the optimizers might intro-
duce a bias.

Robust estimators are a principled scheme to deal with outliers in linear regimes
[3]. One variant of said techniques is based on Correntropy [9]—the dependence
measure that goes beyond Gaussian environments and their associated criterion
for maximum likelihood estimation: Minimum Squared Error (MSE). Correntropy
mimics induced metrics that are fully regulated via one main hyperparameter; if said
scale parameter is chosen properly, the induced metric is robust against outliers. We
harness such property to propose a novel dictionary learning approach where MSE
criteria of K–SVD are replaced by robust metrics based on Correntropy. The result
is Correntropy–based Dictionary Learning, or CDL.

Likewise K-SVD, CDL exploits fast sparse code estimators, such as Orthogo-
nal Matching Pursuit (OMP), and iterative Singular Value Decompositions (SVD).
Wang et. al proposed a Correntropy variant of OMP known as CMP [20] while
Loza and Principe devised CK–SVD, a robust alternative to MSE–based SVD [10].
In the current work, we combine both approaches in a fully robust Correntropy–
based sparse modeling framework for linear generative models. Synthetic data and
image denoising under non–homogeneous impulsive noise confirm the robustness
and sparseness of the solutions in addition to their superiority over K–SVD. The
rest of the paper is organized as follows: Section 2 details the problem of robust
dictionary learning and the proposed solutions. Section 3 summarizes the results,
and, lastly, Section 4 concludes the paper and mentions potential further work.

2 Correntropy–based Sparse Modeling

Let Y = {yi}N
i=1, (yi ∈ IRn) be a set of observations or measurements where each

vector can be encoded as a sparse linear combination of predictors, also known as
atoms, from an overcomplete basis, or dictionary D ∈ IRn×K :

y = Dx0 +n s.t. ||x0||0 = T0 (1)

where T0 is the support of the ideal sparse decomposition x0, || · ||0 represents the `0–
pseudonorm, and n is the additive noise. The sparse coding problem aims to estimate
x0 given y and a sparsity constraint. The sparse modeling problem generalizes to a
full generative model where both sparse code and dictionary are unknown. Then for
Y, the constrained optimization becomes:
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min
D,X
{||Y−DX||2F} s. t. ∀i, ||xi||0 ≤ T0 (2)

where xi is the sparse code corresponding to the yi entry and || · ||F stands for
the Frobenius norm. The performance surface in (2) is non–convex; hence, typical
greedy techniques are adopted instead. In this case, K–SVD [1] generalizes k–means
by alternating between finding sparse codes, i.e. distributed representations of the in-
puts, and dictionary update in the form of SVD routines in a atom–by–atom scheme.
Even though K–SVD admits any off–the–shelf sparse coding technique, Orthogonal
Matching Pursuit (OMP) [19] is usually preferred due to its convergence properties,
efficiency, and simple, intuitive implementation.

OMP and SVD–based routines are anchored on the underlying assumption of
Gaussian errors. The former exploits Ordinary Least Squares (OLS) to sequentially
update the active set of atoms, while the latter utilizes MSE as the cost function to
update the dictionary elements. Both approaches are destined to introduce biases in
the presence of outliers. We circumvent the Gaussianity assumption while incorpo-
rating robustness into the sparse modeling framework by exploiting Correntropy as
the cost function in both K–SVD stages.

2.1 Correntropy–based OMP

OMP [19] aims to find a local solution to the sparse coding problem by iteratively
selecting the most correlated atom in D to the current residual, i.e. for the j-th iter-
ation:

λ j = argmax
i∈Ω

|〈r j−1,di〉| (3)

where r0 = y, Ω = {1,2, · · · ,K}, di is the i-th column of D, and 〈·, ·〉 denotes the
inner product operator. The resulting atom is then added to the active set via Λ j =
Λ j−1∪λ j.

Lastly, the sparse code is updated as:

x j = argmin
x∈IRK ,supp(x)⊂Λ j

||y−Dx||2 (4)

which is solved via OLS. r j is then updated as r j = y−Dx j. Usually, OMP runs for
a fixed number of iterations, L, or until the norm of the residue reaches a predefined
threshold. The sparse code of (4) would be severely biased in the presence of out-
liers, i.e. each dimension in the input space would be equally weighted as a result of
a non–robust estimator.

Correntropy [9] gauges the non–linear interactions between two random variable,
X and Y , via a mapping to a reproducing kernel Hilbert space (RKHS):

Vσ (X ,Y ) = E[gσ (X−Y )] (5)
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where gσ is the Gaussian kernel gσ (t) = exp(−t2/2σ2) and σ , the kernel band-
width, modulates the norm Correntropy will mimic (also known as CIM or Cor-
rentropy Induced Metric). The metric ranges from the `0–pseudonorm for small σ ,
`1–norm for increasing σ and `2–norm (defaults to MSE criterion) for large band-
widths. Hence, a proper choice of σ is able to incorporate robustness into the learn-
ing framework.

Correntropy Matching Pursuit (CMP) [20] replaces the MSE criterion of (4) by
the robust CIM criterion, i.e.:

x j = argmin
x∈IRK ,supp(x)⊂Λ j

Lσ (y−Dx) (6)

where Lσ (e) = 1
n ∑

n
i=1 σ2(1−gσ (e[i])) is the simplified version of the CIM sample

estimator. The non–convex nature of the CIM demands for alternative optimization
techniques. As in [20], Half–Quadratic (HQ) optimization [14] yields a local mini-
mum of the cost function via iterative minimizations of a convex enlarged parameter
cost. The resulting adaptive σ hyperparameter, the weight vector that assesses the
nature of the inputs (e.g. outliers vs. inliers), the sparse code for OMP iteration j,
and the updated residue are estimated as:

σ
(t+1)
j =

(
1

2n

∣∣∣∣∣∣y−Dx(t+1)
j

∣∣∣∣∣∣2
2

) 1
2

(7)

w(t+1)
j [i] = gσ

(
y[i]−

(
Dx(t)j

)
[i]
)
, i = 1,2, . . . ,n (8)

x(t+1)
j = argmin

x∈IRK ,supp(x)⊂Λ j

∣∣∣∣∣∣∣∣√W(t+1)
j (y−Dx j)

∣∣∣∣∣∣∣∣2
2

(9)

r j =
√

W j(y−Dx j) (10)

where t is the HQ iteration and W j is the diagonal matrix version of w j. The
theory behind HQ guarantees convergence of the sequences in question [14], i.e.
limt→∞ x(t)j = x j and limt→∞ w(t)

j = w j. Eq. (9) is solved via classic OLS; hence the
whole approach can also be framed as a weighted least squares problem. Hence,
CMP weighs the inputs according to a Gaussian kernel—it emphasizes components
from the underlying model family (linear in this case) and diminishes the influence
of outliers. The result is a robust sparse code.

2.2 Correntropy–based Dictionary Update

K–SVD [1] is data–driven dictionary learning technique that exploits block coordi-
nate descent to obtain a stationary point of (2). In practice, K–SVD alternates be-
tween sparse coding and dictionary element updates. The latter subroutine assumes
both X and K−1 columns of D are fixed; then, the atom in question, dk, alongside
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its support, i.e. xk
T (k-th row of X), are updated as:

||Y−DX||2F =

∣∣∣∣∣
∣∣∣∣∣Y− K

∑
j=1

d jx j
T

∣∣∣∣∣
∣∣∣∣∣
2

F

=

∣∣∣∣∣
∣∣∣∣∣(Y−∑

j 6=k
d jx j

T )−dkxk
T

∣∣∣∣∣
∣∣∣∣∣
2

F

= ||Ek−dkxk
T ||2F (11)

where Ek is the error when the k-th atom is removed. The updated vector is estimated
via SVD of ER

k ∈ IRn×m, which is a restricted version of the error matrix that only
preserves the columns of Ek currently active for dk.

SVD is optimal only under the MSE criterion. Correntropy K–SVD or CK–SVD
[10] replaces the SVD routines by robust alternatives that exploit the principle of
Maximum Correntropy Criterion (MCC) [9]. Specifically, let ei be the i–th column
of ER

k and vi its low dimensional representation linearly mapped via the orthonor-
mal projection matrix U. The goal is to maximize a novel cost function J(U) that
mitigates the effect of outliers during said projection:

J(U) =
m

∑
i=1

gσ (ei−Uvi) (12)

As proposed by He et. al [8], HQ optimization is exploited to enlarge the param-
eter space and admit an iterative scheme that guarantees convergence to a local
maximum. The adaptive σ hyperparameter, the weight vector that determines the
influence of {ei}m

i=1, and the projection matrix are equal to:(
σ
(t)
k

)2
= 1.06×min

{
σE ,

R
1.34

}
× (m)−1/5 (13)

p(t+1)
k [i] =−g

(√
eT

i ei− eT
i (U(t))(U(t))T ei

)
(14)

U(t+1)
k = argmax

U
Tr
(

UT ER
k P(t+1)

k (ER
k )

T U
)

(15)

where t is the HQ iteration and P(t)
k is the diagonal matrix version of p(t)

k . Particu-
larly, Eq. (13) uses Silverman’s rule [17] to estimate the kernel bandwidth adaptively
where σE is the standard deviation of the sequence ||ei−U(t)(U(t))T ei||2 and R is
its interquartile range. Eq. (15) is solved via classic SVD solvers where the updated
atom is the eigenvector corresponding to the largest eigenvalue. In short, CK–SVD
is a weighted PCA implementation that downplays the influence of outliers during
the dictionary update stage of K–SVD.
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2.3 Correntropy–based Dictionary Learning

As an algorithm based on block coordinate descent, K–SVD relies on effective
sparse coders and SVD solvers to work iteratively to find a local solution. Yet, if
any of the two subroutines yields biased estimates (due to outliers or non–Gaussian
environments), it will directly affect the subsequent stage and lead to overall bi-
ased sparse codes and dictionary. Hence, it would be advantageous to incorporate
robustness into both stages by leveraging the properties of Correntropy.

We propose a combined fully Correntropy–based sparse modeling framework.
CDL or Correntropy–based Dictionary Learning alternates between robust sparse
coding (CMP) and Correntropy–based Dictionary Update until convergence. On the
one hand CMP downplays the influence of outliers (under a linear regime) in the ob-
servation vectors Y, while on the other hand Correntropy–based Dictionary Update
routines mitigate the effect of outliers (under MSE) in the estimated dictionary D.
Thus, CDL is able to deal with both types of outliers in a principled robust manner
without any extra hyperparameters.

For completeness, we also propose a variant of K–SVD that uses CMP and MSE–
based dictionary update: CMPDL, and reintroduce C–KSVD [10], a combination
between OMP and Correntropy–based Dictionary Update. In this way, it is possi-
ble to assess which K–SVD stage is more sensitive to outliers and non–Gaussian
scenarios.

3 Results

The first set of results focuses on robust sparse modeling with access to ground
truth. The dictionary, D ∈ IR20×50, is generated by sampling a zero–mean uniform
distribution with support [−1,1]. Each column is normalized to a unit `2–norm.
Sparse codes are generated from a uniform random variable with support [0,1] (T0 =
3).

Then, 1500 20–dimensional samples are produced via linear combinations be-
tween sparse codes and dictionary. These samples are then affected by noise. We
compare the performance of K–SVD, CMPDL, CK–SVD, and CDL by computing
the inner product between atoms from estimated and generating dictionaries. Each
dictionary learning technique alternates 40 times between sparse coding and dictio-
nary update. The expected sparsity support is set to L = 3.

The first type of noise is additive Gaussian. Its SNR is varied from 0 to 20 dB.
Table 1 details the performance of each algorithm as the average of 50 independent
runs for each SNR case (upper rows of each cell). The table also summarizes the
same metrics under additive Laplacian noise (lower rows of each cell). It is evi-
dent that the robust variants outperform K–SVD, with CDL being superior for most
cases. The experiments with low SNR emphasize the fact that Correntropy–based
variants are able to properly handle errors with long tail distributions.



A Robust Fully Correntropy–based Sparse Modeling Alternative to Dictionary Learning 7

Table 1: Average inner product between estimated and ground truth atoms under
additive Gaussian (upper rows of cells) and Laplacian (lower rows of cells) noise.
Best results are marked bold.

SNR Algorithm
(dB) K–SVD CMPDL CK–SVD CDL

0 0.67 0.71 0.68 0.72
0.67 0.71 0.69 0.75

5 0.87 0.91 0.91 0.94
0.86 0.91 0.92 0.95

10 0.98 0.98 0.99 0.99
0.98 0.97 0.99 0.99

15 0.98 0.99 0.99 0.99
0.98 0.98 0.99 0.99

The third type of noise is non–homogeneous in the form of missing entries in
the observation vectors. In particular, a percentage of the components from each
observation vector is set to zero. This rate is varied from 0 to 50%. Fig. 1 summa-
rizes the average of 50 independent runs for each sparse modeling technique. The
Correntropy–based variants consistently outperform K–SVD while CDL is superior
in aggressive noise environments. The degradation of CDL under no missing pixels
is worth investigating as further work.
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Fig. 1: Average inner product between estimated and ground truth atoms under miss-
ing entries type of noise.

The next set of results deals with image denoising. The approach proposed in
[7] is exploited here. Essentially, the denoising mechanism invokes sparse model-
ing over local patches of the noisy image. Each patch is sparsely encoded with a
constraint on the residue norm equal to 1.15σ , where σ is the standard deviation
of homogeneous additive Gaussian noise. Then, local averaging over overlapping
patches and global weighted averaging with the noisy image renders the estimated
denoised example (Lagrange multiplier, λ , is set equal to 30 according to [7]).
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For the current work, we choose σ = 20. Our framework is tested under a non–
linear transformation in the form of impulsive noise, i.e. a percentage of affected
pixels will be saturated to either 0 or 255 according to additive Gaussian noise with
high power (σimp = 100 for this case). The rate of affected pixels is varied from 0
to 40%. In short, the original image goes first through an additive linear transfor-
mation with σ = 20 and then through a non–linear, inhomogeneous transform with
σimp = 100. All possible overlapping vectorized 8× 8 pixel patches constitute the
observations of the sparse model. The initial dictionary D ∈ IR64×256 is chosen as
the overcomplete Discrete Cosine Transform (DCT) basis. Lastly as suggested in
[7], 10 alternating optimizations of the block coordinate descent routine are ran for
each case.

Table 2 details the average PSNR over 5 independent runs for each noise rate and
five different well known gray–scale images of size 512×512. In general, CMPDL
and CDL deliver the best performances while CK–SVD remains close to the K–SVD
baseline. In particular, CMPDL and CDL are fairly consistent for a wide range of
affected pixels. CMP seems to be the deciding factor here—it filters the inlier sam-
ples to the subsequent atom update stage, and, hence, reduces the estimation bias.
On the other hand, OMP overrepresents the inputs and passes noisy examples to the
K–SVD or CK–SVD dictionary update routines. This is confirmed in Table 3 where
the average number of coefficients (per 8×8 block) in the sparse decompositions are
compared. CMP–based variants clearly render a truly sparse representation, while
other flavors overrepresent the input by encoding residual noise until the constraint
on the residue norm is met. Therefore, Correntropy is more advantageous in the
sparse coding subroutine than in the SVD solver. The details regarding the slight
difference in PSNR between CMPDL and CDL are left as further work. Lastly, Fig.
2 illustrates the denoising results for a case of 40% rate of outlier pixels.

Table 2: Summary of denoising performance, PSNR (dB), under different impulsive
noise (outliers) rate. Each cell reports four denoising techniques. Top left: K–SVD
[7]. Top right: CMPDL. Bottom left: CK–SVD [10]. Bottom right: CDL. Best re-
sults are marked bold.

Outlier % Barbara Boats House Lena Peppers Average

0 30.80 29.33 30.33 29.11 33.17 32.23 32.38 31.53 30.77 29.45 31.49 30.33
29.84 28.73 29.85 28.39 32.43 31.50 31.85 30.85 30.25 28.81 30.84 29.66

10 20.95 24.51 20.76 24.42 20.98 25.21 20.99 24.92 20.86 24.58 20.91 24.73
21.19 24.40 20.94 24.29 21.31 25.21 21.25 24.84 21.18 24.51 21.17 24.65

20 18.66 23.76 18.56 24.06 18.67 24.73 18.69 24.44 18.62 23.98 18.64 24.19
18.55 23.57 18.37 23.78 18.49 24.62 18.48 24.25 18.71 23.81 18.52 24.01

30 16.66 23.74 16.54 24.48 16.61 25.03 16.65 24.76 16.66 24.10 16.62 24.42
16.71 23.09 16.58 23.66 16.63 24.47 16.69 24.18 16.67 23.60 16.66 23.80

40 15.22 24.28 15.09 24.88 15.16 25.99 15.16 25.76 15.18 24.58 15.16 25.09
15.24 22.16 15.12 23.30 15.21 24.30 15.19 24.20 15.22 22.88 15.20 23.37
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Table 3: Grand average number of coefficients in sparse decompositions after block–
based image denoising. Sparsest solutions are marked bold.

Outlier Algorithm
% K–SVD CMPDL CK–SVD CDL

0 0.85 0.45 1.17 0.46
10 3.72 0.96 3.96 0.96
20 7.98 1.00 8.11 1.00
30 11.12 1.04 13.47 1.05
40 13.07 1.19 17.99 1.32

Original Noisy, PSNR=13.64 K–SVD, PSNR=15.16

CMPDL, PSNR=25.74 CK–SVD, PSNR=15.2 CDL, PSNR=24.19

Fig. 2: Example of the denoising results for the image “Lena”. 40% of pixels are
affected by impulsive noise.

4 Conclusion

We proposed a robust sparse modeling framework where Correntropy is exploited to
reformulate the cost functions of both sparse coding and dictionary update stages of
K–SVD. Experiments with synthetic data and image denoising confirm the robust-
ness of the estimators and their potential in applications prone to outliers where
sparsity is advantageous. In particular, Correntropy seemed to be more decisive
when used in the sparse coding subroutine of K–SVD. Further work will involve
in–depth analysis of the heuristics utilized to select the kernel widths and their con-
nection to robust linear modeling [3]. In addition, the denoising mechanism pro-
posed in [7] states empirical optimal hyperparameters for MSE–based cases. We
believe different sets of hyperparameters might yield distinct stationary points for
Correntropy–based optimizations that are worth investigating.
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