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ABSTRACT

We introduce a method that incorporates robustness to one
of the main building blocks of sparse modeling: dictionary
learning. Particularly, we exploit correntropy to compute the
principal components in cases where outliers might be detri-
mental without proper care. This is further added to one of
the most utilized dictionary learning tools: K-SVD; the result
is Correntropy K-SVD, or CK-SVD, a method that is based
on a Maximum Correntropy Criterion (MCC) instead of the
somewhat limited Minimum Squared Error (MSE) approach.
The optimization is performed using the well-known Half-
Quadratic (HQ) technique, which allows a fast and efficient
implementation. The results show the importance of this work
not only by outperforming K-SVD, but also by circumventing
one of the main assumptions during learning overcomplete
representations: the availability of untampered, noiseless and
outlier-free samples for training stages.

Index Terms— Correntropy, Dictionary Learning, Half-
Quadratic Optimization, Singular Value Decomposition,
Sparse Modeling

1. INTRODUCTION

Sparse Modeling has become one of the most attractive
frameworks for applications such as signal processing, com-
puter vision, and data mining where a parsimonious repre-
sentation is considered advantageous. For instance, image
compression, denoising, and optimization algorithms are
some of the areas that have successfully incorporated sparsity
as a paramount feature [1, 2, 3]. Sparse coding and dictionary
learning constitute the two main building blocks in sparse
modeling. The former strives to find a minimal decomposi-
tion given a set of bases or dictionary, e.g. JPEG compression
using a Discrete Cosine Transform (DCT) basis, while the
latter aims to learn usually overcomplete, high-dimensional
vectors given a set of training samples and additional con-
straints that favor sparsity.

Furthermore, the sparse coding problem is well-known
combinatorial; hence, a possible alternative is finding a lo-
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cal optimum solution via greedy methods, such as Matching
Pursuit (MP) [4] or one of its many variants [5, 6, 7]. These
algorithms are usually simple and effective due to the sequen-
tial inner product operations they require. On the other hand,
the dictionary learning estimation is usually performed us-
ing a probabilistic approach [8, 9] or a generalized clustering
scheme [10, 11]. Of these approaches, K-SVD is one of the
most efficient and widely utilized algorithms for dictionary
learning due to its flexibility and evident generalization of the
well-known K-means clustering technique [12, 13].

However, K-SVD heavily relies on Singular Value De-
compositions (SVD) to iteratively update the dictionary el-
ements or atoms. This approach, although principled, might
yield erroneous estimations when non Additive White Gaus-
sian Noise (AWGN) is present. In particular, outliers could
potentially deviate the estimated principal components and
sequentially affect all the subsequent bases and iterations in a
domino effect. This is a direct consequence of working under
a second-order estimation framework, i.e. Minimum Squared
Error (MSE), where SVD decompositions yield analytical so-
lutions and optimal results. Hence, we propose correntropy
[14] as a feasible alternative that exploits higher-order statis-
tics of the data and overcomes the MSE limitations. In this
way, robustness against high-tailed impulsive noise can be
guaranteed in the K-SVD dictionary learning procedure.

In practice, unlike SVD, there is no closed-form solution
to the correntropy-based principal component decomposition;
hence, we utilize the Half-Quadratic technique [15] as a fast
and efficient optimization approach. In particular, HQ opti-
mization has successfully worked in a MCC-based principal
component scheme before according to He el at. [16]. More-
over, this method has proved to outperform robust techniques
that utilize a L; norm regularization in image processing ap-
plications [17]. Consequently, we incorporate this inherent
robustness of correntropy to the parsimonious constraints of
the dictionary learning problem and introduce a novel addi-
tion to the sparse modeling literature.

The rest of the paper is organized as follows: Section
2 introduces the correntropy measure and describes the HQ
implementation of a robust Principal Component Analysis
(PCA) using correntropy as cost function. Section 3 discusses



the modifications of the K-SVD algorithm to incorporate cor-
rentropy as part of the dictionary learning scheme. Section
4 presents results on two types of data with different noise
environments, and finally, Section 5 concludes the paper with
further research directions.

2. MCC-BASED ROBUST PCA VIA
HALF-QUADRATIC OPTIMIZATION

Correntropy was proposed by Liu, Pokharel, and Principe
as an alternative measure beyond second-order statistics
paradigms and Gaussian environments. Specifically, cross-
correntropy, or simply correntropy for two random variables
X and Y is defined as:

V,(X,Y) = E[K,(X - Y)] (1

where K, (X — Y) represents a kernel operator with param-
eter vector y. In most applications, the Gaussian kernel is pre-
ferred due to its computational tractability, single-parameter
property (y = o), and compliance with the Mercer’s Theorem
[18]. Furthermore, by non-linearly mapping the input data
to a reproducing kernel Hilbert space (RKHS), correntropy is
considered as a second-order statistic in a higher-dimensional
space and is able to incorporate statistical moments beyond
variance. This allows to assess independence in a more strict
sense, i.e. uncorrelatedness in the mapped space is theoret-
ically translated to independence in the input space. These
properties have placed correntropy as an attractive tool in the
signal processing and machine learning fields with relevant
applications including non-linear analysis, robust filtering and
image processing [17, 19, 20, 21, 22].

In practice, correntropy is estimated utilizing averages of
the available samples of the random variables X and Y, i.e.
{(xi, i l"i ,} and the Gaussian kernel, G(x):
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Now in order to incorporate correntropy in the PCA for-
mulation, we follow a similar approach as He et. al [16] and
define the cost function J(0) as:

JO) = ) Go(xi—pu—Uv) 3

N
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where y; = u— Uv; and 6 2 (u, U). Particularly, 6 encom-
passes the estimated mean of the data along with the projec-
tion matrix U that will contain the principal eigenvectors of
the distribution. Maximizing (3) is also known as the Maxi-
mum Correntropy Criterion or MCC [14]. Provided that U is
orthonormal and substituting v; = UT (x; — ) into (3) using
the projection theorem, we obtain the following optimization:
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where x’l’ = x; — u. In order to solve (4), we exploit the
advantages of the Half-Quadratic technique [15] and refor-
mulate the cost function to introduce an enlarged parameter
space:

N
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i=1
where p is a scalar variable and ¢(x) is a convex conju-
gated function of G,(x). In particular, for a fixed x, the op-
timum value for this constraint is obtained at p = —G,(x).
Moreover, for a fixed 8, the following equation holds true:

max Jio(6) = max Jo(6, p) (6)
.p

Hence, maximizing Jy is equivalent to maximizing J HO-
Furthermore, it is possible to optimize (5) in an efficient al-
ternating scheme that is fully described in Algorithm 1. We
have used E € R™ instead of X and d instead of N to comply
with the notation of the next section. Also, g,(x) is the nor-
malized Gaussian kernel, i.e. g,(x) = exp (=x2/20?), and the
m, parameter is introduced to control the number of principal
components to be computed, i.e. 1 <m, <d.

Algorithm 1 Robust PCA via HQ
Input: E € R™?, e,uc R",U' € R™™
Output: y, U € R™>"r
J <1
while convergence == FALSE do
r e lle; = ) = U/ (U (ei = )| i=1,....d
o « 1.06 x min {std(r), IQR(r)/1.34} x d~'/

4’(—@—/1 i=1,...,d
P 8ol &TE - LT UHWTE) =1
e CL pix)/(CL, p)

EL‘ — [xl — M, X2 _ﬂ"-'9-xd_ﬂ]

P « diag(-p)

U’*! «— PCA(E.PE!,m,)
if||uij—ul.”1||<e i=1,...,m, then
convergence = TRUE
U « UJ+1
else
convergence = FALSE
J—J+1
end if
end while

Additionally, Algorithm 1 requires a stopping criterion
threshold that, in this case, is based on L, norms of successive



estimated principal components. Also, the initializations of u
and U are necessary as well. These can be, for instance, sam-
ple estimators of the mean and bases obtained using regular
PCA, respectively. Lastly, it is worth mentioning that Algo-
rithm 1 includes a recurrent estimator of the kernel parameter,
o, that is based on the Silverman’s rule [23]. In this way, o
is incorporated in the HQ optimization. This has been proved
to work well in practice by mimicking kernel annealing and,
at the same time, eliminating an additional free parameter of
the model.

Fig. 1 shows an illustrative example of the method for
n=24d=200,m =1,e= 10" Even though the number of
outliers is relatively small (10 out of 200 samples), it is clear
that regular PCA erroneously estimates the principal compo-
nent or eigenvector of the original, outlier-free distribution.
On the other hand, robust MCC-based PCA accurately recov-
ers the maximum direction of spread in the data. This opens
the possibility to utilize this robust framework in applications
where PCA or Singular Value Decomposition (SVD) are the
gold standard, namely K-SVD, one of the most utilized dic-
tionary learning tools in the sparse modeling community.

3. MCC-BASED K-SVD

K-SVD was proposed by Aaron, Elad, and Bruckstein [11] as
a generalization of the well-known K-means clustering algo-
rithm [24]. Basically, given a set of observations Y = {yi}f\i 1>
(y; € R"), the goal is to find a set of bases or atoms, also
known as dictionary, D € R™K along with a sparse represen-
tation, X € RX*N given a particular constraint, i.e.:

min{||Y - DX|%}  subjectto Vi, lxillo < To  (7)

where Ty determines the number of non-zero entries in the
sparse representation vector x;, i.e. i-th column of X.
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Fig. 1: MCC-based Robust PCA example. From top to bottom:
Original Gaussian pdf (First Principal Component in red). 20
outliers (5%) are added and PCA is computed. Same distribution
with MCC-based Robust PCA eigenvector.

Similarly to K-means, in K-SVD there are two well-
defined stages: Sparse Coding and Dictionary Update. The
first one utilizes any of the standard sparse coding algorithms,
e.g. Matching Pursuit, Orthogonal Matching Pursuit (OMP),
and a fixed dictionary to find a sparse representation of the
samples in Y; this is analogous to finding the nearest cluster
to the input data using a particular metric. However, K-
SVD allows contributions from multiple clusters in a linear
combination fashion similar to fuzzy clustering.

The Dictionary Update stage resembles the centroid recal-
culation procedure in K-means, nevertheless, in K-SVD this
task is accomplished by Singular Value Decompositions that
attempt to minimize the L, norm of the residual error for a
given basis. Particularly, it is necessary to assume that both
X and k£ — 1 columns of D are fixed; then, the k-th atom, i.e.
dy, and the elements in X currently associated to such atom,
ie. x’; (k-th row in X), are jointly updated via the following
formulation:
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where E} is the error when the k-th atom is removed. The
optimal solution for (8) in a MSE sense is given by the SVD:
E, = UAVT. Specifically, the updated d; will be equal to
the first column of U and the sparse representation coeffi-
cients will be the result of the first column of V multiplied
by the first diagonal element of A. This is all assuming the
principal components are sorted in a decreasing represented
power fashion. Lastly, it is necessary to take into account only
the atoms currently using the dictionary element in question;
hence, the matrix Q; € RV jsolates such elements plac-
ing ones on its (w(i), {)th entries and zeros elsewhere. This
guarantees the sparsity constraint is not violated.

Although K-SVD has been proved to be efficient under
certain environments, it heavily relies on second-order statis-
tics, namely SVD operations which are only optimal under
MSE assumptions and Gaussian scenarios. Especially, it is
well known that during the learning phase, the input samples
are assumed to be high-SNR, untampered, and outlier-free. If
these conditions are not met, the dictionary algorithm might
yield erroneous estimations as a direct result of lacking ro-
bustness. We propose incorporating the MCC-based robust
PCA approach to the dictionary learning scheme in order to
deal with outliers in a principled way. This is accomplished
by implementing MCC-based decomposition instead of the
traditional SVD for each one of the dictionary elements up-
dates. The final technique, Correntropy K-SVD, or CK-SVD,
is detailed in Algorithm 2.



Algorithm 2 CK-SVD

Input: Y € RN, D € R>K Ty, K
Output: D € R™K X e RN
repeat
Sparse Coding Stage
X « SpCod(Y, D, Ty)
Dictionary Update Stage
fork=1,2...Kdo
wi — {ill <i < N,xk@) #0)
Ex—Y—3iu djx]T
Q € RNl s.t.
Ef — E
Solve Ef = UAV"via Robust PCA
dy, « first column of U
end for
until convergence

Qe(wi(@),0) = 1

4. RESULTS

Two sets of results are presented, the first one deals with com-
plete dictionaries and two different types of high-tailed im-
pulsive noise, while the second set shows the potential of the
novel algorithm when working with grayscale image patches.

4.1. Recovering Orthogonal Bases

The first experiment uses 16-dimensional DCT bases as the
generating, complete dictionary. These atoms are linearly
combined in sets of three (Ty = 3) in a random fashion with
coeflicients drawn from a uniform distribution with range
(—1,1). A total of 1500 cases are generated, i.e. n = 16,
N = 1500. Then, we add impulsive noise of SNR= —-20dB
to 5% of the samples while the rest 95% is kept at a baseline
SNR well above —20dB.

Subsequently, K-SVD and CK-SVD estimate the dictio-
nary using Matching Pursuit, model parameters K = 16, Ty =
3, e =10"% m, = 1, initial dictionary estimates from regular
PCA, and a total of 30 sequential dictionary update iterations
for each case. Finally, the baseline SNR was varied from 0
to 10dB while the outlier SNR was kept at —20dB. A total of
100 realizations were simulated per each baseline SNR value.
Fig. 2 illustrates the average cross-correlation coefficient be-
tween the estimated dictionary atoms and the DCT elements
as ground truth. It is evident that CK-SVD outperforms K-
SVD for every single baseline SNR. Most importantly, CK-
SVD displays less variability across trials, i.e. smaller stan-
dard deviations, and consistently high cross-correlation coef-
ficients across different noise floors. This confirms the robust-
ness and efficiency of the proposed algorithm.

For the next experiment, a more challenging scenario is
posed: instead of having 5% of the samples influenced by
outliers, every single one of the 1500 samples will present a
different type of impulsive noise, namely 1 of the 16 entries
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Fig. 2: Comparison of K-SVD and CK-SVD for different baseline
SNR values and high-tailed impulsive noise of —20dB in 5% of the
samples. Average cross-correlation is computed with respect to
noiseless 16-dimensional DCT dictionary.

of each input data sample will be influenced by outliers. This
is equivalent to say that roughly 5% of the individual entries
of each sample will be an outlier. Another way of present-
ing this scenario is to say that 1 out of the 16 dimensions of
the input space will be randomly affected by impulsive noise
in every single sample; however, this dimension will be ran-
dom for each vector. In comparison, the first problem was
equivalent to affecting all 16 dimensions at once for 5% of
the population.

The same parameters concerning sparsity were utilized,
ie. To=3,e=10"% m, = 1 and Matching Pursuit. Once
again, N = 1500 and we simulated 100 different trials per
outlier scenario along with 30 sequential dictionary update
iterations per case. For this experiment, the baseline SNR
was kept at 10dB while the high-tailed impulsive noise SNR
is varied from —20 to OdB. Fig. 3 depicts the final results
using cross-correlation to the ground truth dictionary. Simi-
larly to the first case, CK-SVD consistently outperforms K-
SVD. Furthermore, it is remarkable how CK-SVD constantly
remains closer to 1 starting at the —10dB mark, which is the
point where the outlier samples are theoretically unaffected
by noise (outlier noise is matched by baseline noise), how-
ever, K-SVD is unable to fully recover the dictionary atoms
and displays higher variability. This again confirms the ro-
bustness of CK-SVD. It is worth mentioning that results using
OMP were very similar for both experiments due to the fact
that the generating dictionary is complete; hence, MP reduces
to OMP.

4.2. Gray Scale Image Patches

For the second set of experiments, we utilized 1000 8 x 8
patches of grayscale images randomly extracted from the Yale
Face Database [25]. Particularly for this type of signals, the
dynamic range restricts the possibilities for high-tailed impul-
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Fig. 3: Comparison of K-SVD and CK-SVD for different
high-tailed impulsive noise cases and a constant baseline SNR of
10dB. Every single input data sample has one entry considered as
an outlier. Average cross-correlation is computed with respect to

noiseless 16-dimensional DCT dictionary.

sive noise cases, however, it is possible to simulate outliers
with blocks consisting of salt and pepper noise, i.e. blocks
with black and white pixels. The number of outlier pixels
was varied depending on the size of the noisy square block,
e.g. 4,9, and 16 outlier pixels, and the percentage of outlier-
influenced patches was set to 20%.

Next, we estimated the generating dictionary applying K-
SVD to the noiseless samples and correlating the atoms to the
corresponding K-SVD and CK-SVD results with the outlier-
influenced samples as input. Specifically, the parameters were
the following: N = 1000, n = 64, K = 100, Ty =5, € = 1074,
m, = 1. We ran a total of 20 different realizations per outlier
scenario along with 50 sequential dictionary update iterations
per case. Both MP and OMP were utilized. Table 1 summa-
rizes the average percentage in increase in the reconstruction
error, i.e. ||Y — DX]||?, with respect to the noiseless K-SVD
case. It is evident that CK-SVD performs better than K-SVD,
i.e. it is able to recover the noiseless dictionary with minimal
error. Another interesting remark is the fact that the OMP
cases have a higher increase in reconstruction error than their
MP counterparts, regardless of the utilized dictionary learning
framework (K-SVD or CK-SVD). This is, however, expected
because OMP relies on sequential orthogonal projections that
are optimal only under the Gaussian assumption and the MSE
cost function, hence, they will be heavily affected by the out-
liers in the input space.

Finally, we also simulated the cases where the percentage
of outliers is varied. For this scenario, we chose blocks of 16
salt and pepper pixels per outlier-influenced sample and com-
pared the resulting dictionaries with the noiseless case. The
results are shown in Fig. 4 and indicate a clear consistency
across outlier presence for CK-SVD, while, on the other hand,
K-SVD increases the reconstruction error in proportion to the
percentage of altered pixels.

Fig. 4: Percentage of increment in reconstruction error as a
function of outlier presence in 8 X 8 grayscale image patches (4 X 4
noisy blocks). Reconstruction error is compared to the noiseless
case where K-SVD was utilized.

Table 1: Relative Increment (%) in Reconstruction Error for 20%

of outliers
outlier K-SVD CK-SVD K-SVD CK-SVD
pixels + MP + MP + OMP + OMP
4 14.34 11.48 18.58 14.85
9 31.49 13.84 35.33 16.06
16 44.69 15.18 5143 21.30

5. CONCLUSIONS AND FURTHER WORK

We have derived and implemented a MCC-based dictionary
learning approach that exploits the generalization of the K-
means clustering algorithm, namely K-SVD. We showed syn-
thetic and digital image examples under different noise envi-
ronments, and the results highlight the robustness of the al-
gorithm along with a straightforward implementation. Our
next interests involve incorporating correntropy to the full
sparse modeling framework by taking advantage of previous
work that implemented a greedy, robust sparse decomposition
method based on the Generalized Correntropy measure [26].
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